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NOMENCLATURE 

area associated with a single molecule of surfactant. 
p 

cm /molecule 

area average particle diameter, 2 

number average particle diameter, i 

volume average particle diameter, i 

f(t) exit age distribution 

[I] initiator concentration, moles/1 

initiator decomposition rate constant, sec"^ 

kp polymerization rate constant, 1/mole-sec 

k^ termination rate constant, 1/mole-sec 

k^^ chain transfer rate constant, 1/mole-sec 

I V  f c x  u w o i i  u u i i o u d i i u  x u r  C L  x c l o c a  u c t x * b l C j _ e  «  

M molecular weight, moles/1 

MQ molecular weight of monomer, moles/1 

number average molecular weight, gr/mole 

Mnp number average molecular weight of polymer in a 

particle, gr/mole 

viscosity average molecular weight, gr/mole 

weight average molecular weight of polymer in a 

particle, gr/mole 

[M] monomer concentration in a particle, mole/1 



V 

n number of radicals in a particle 

N number of particles per gram of latex 

Avogadro's number, molecules/mole 

r radius of a latex particle, cm 

r^ rate of radical capture by a particle, events/sec 

r^. rate of termination inside a particle, events/sec 

r^^ rate of chain transfer inside a particle, events/sec 

R rate of radical generation, radicals/l-sec 

[R] free radical concentration, moles/1 

S total area of particles and micelles in the system, 

cm^/1 

[S] surfactant concentration, moles/1 

t time, sec 

volume of a particle, 1 

a dimensional constant used to calculate the rate of 

radical capture 

j3 dimensional constant used to calculate the rate of 

termination 

T] dimensional constant used to calculate the rate of 

chain transfer 

[T]] intrinsic viscosity 

p density of monomer, gr/ml 

pp density of a particle, gr/ml 



vi 

mean residence time of the reactor, sec 

volume fraction of monomer in a particle 
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INTRODUCTION 

During World War II both the United States and Germany 

saw a need to develop a synthetic rubber in order to become 

self-sufficient in that commodity. Consequently, a massive 

research effort was directed at this end, and as a result, 

a process for producing a synthetic rubber was developed. 

This research program had a side effect of producing many 

engineers and scientists trained in the new field of polym­

erization. After the war these engineers and scientists 

directed their skills toward other areas of polymerization, 

resulting in a boom in the polymer industry. Today polymers 

and polymerization are a dominant sector of the chemical 

industry, employing over fifty percent of all chemists and 

chemical engineers (56). 

in the government research program, uue particular 

polymerization process was found to be best suited for 

producing an artificial rubber and vas therefore studied 

extensivelyc This process was emulsion polymerization. In 

this process, water, monomer, a surfactant, and a water-

soluble initiator are mixed together. The product of the 

resulting polymerization is a latex in which the polymer is 

present in tiny particles stabilized in the latex by the 

surfactant. Some of the advantages of such a procoss are 

apparent. Heat transfer from the site of polymerization by 
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the water phase is excellent, so that temperature control 

is not a problem. Since the product is a latex, it is di­

rectly usable in paints, coatings, and adhesives. Perhaps 

the most important advantage is that uniformly high molecu­

lar weight polymers are produced at high rates of reaction. 

This is a direct contrast with bulk, solution, and suspen­

sion polymerization processes in which high molecular weight 

polymers are produced only at very slow rates of reaction. 

There are also disadvantages with an emulsion polymeriza­

tion process. For instance if the polymer itself is the 

desired product, the latex must be destroyed, and the 

polymer must be recovered and processed to remove the sur­

factant. In addition while most of the polymer is being 

produced in the latex particles, bulk polymerization may 

be occurring in the monomer droplets, and solution polym­

erization may be occurring in the monomer-water solution. 

The polymer produced in these last two locations has con­

siderably different properties than that produced in the 

particles. Fortunately it forms a separate solid phase 

which can easily be removed from the latex. Perhaps the 

most troublesome problem of emulsion polymerization is that 

a product properties are often inconsistent from one run to 

another even though reaction conditions are not inten­

tionally changed. 

Despite its drawbacks emulsion polymerization is still 
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the basis for nearly all artificial rubber processes. 

Besides rubber, many paints, coatings, and adhesives are 

also produced by emulsion polymerization. Except in the 

rubber industry, most emulsion polymerization processes 

employ batch production rather than continuous production. 

The flexibility of a batch operation is certainly one rea­

son for this. Another reason, and perhaps the most im­

portant, is the difficulty in operating and controlling a 

continuous emulsion pol^Tnerization system. Perhaps with 

additional research this can be overcome and continuous 

emulsion polymerization will see more commercial use. 

Purpose and Goal of this Investigation 

The advantages of being able to predict and control 

the properties of polymer produced under a given set of 

conditions are obvious. In emulsion polymerization, the 

size distribution of the latex particles and the molecular 

weight of the polymer are two key properties which would 

be desirable to predict and control. For this investiga-

OJ-Uii luuj-cuUJ-di" v.'fïJ-giiu waC3 one jjxupcj. o\j± j-ii— 

terest. The specific goal was to experimentally determine 

the relationship between molecular weight and particle 

size and to obtain a mathematical model which could be used 

to explain the experimental results. The purpose of the 

investigation was two-fold. One purpose of determining 
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relationship between molecular weight and particle size was 

to identify the sources of molecular weight poly-dispersity 

and thus to provide better predictions of the molecular 

weight distribution. The second purpose was to obtain ad­

ditional insight into the mechanism of emulsion polymeri­

zation so that a more accurate model may be obtained. 



5 

THEORY AM) LITERATURE REVIEW 

Smith-Ewart Theory 

A qualitative theory of emulsion polymerization was 

introduced by Harkins in 19^+7 (20). The following year Smith 

and Ewart's quantitative refinements to the theory were pub­

lished. They retained the basics of Earkins' mechanism and 

included a mathematical analysis of the batch emulsion polym­

erization process (48). The work of these pioneers is still 

widely accepted as providing a reasonably satisfactory de­

scription of the batch process of emulsion polymerization. 

The basics of their theory will be given below. 

The essential ingredients of an emulsion polymerization 

reaction are water, monomer, surfactant, and initiator. 

Initially the surfactant is present as clusters of 50-100 

molecules which contain a small amount of monomer. The 

shape and size of these clusters, or micelles, is uncertain, 

but one may consider them to be spherical with a diameter 

of approximately 50 angstroms. 

The monomer is present as droplets which are approxi­

mately 10 n in diameter and are stabilized by surfactant 

molecules which cover the surface of the droplet. 

The water soluble initiator decomposes slowly to pro­

vide a steady source of free radicals throughout the re­

action. The free radicals are very reactive and will 
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combine chemically with monomer to initiate the growth of 

a polymer chain. The free radicals diffu.se through the 

water until they come in contact with a micelle. Upon con­

tact the free radical is absorbed into the micelle and re­

acts with the monomer initiating the polymerization reac­

tion. The micelle with a polymer-monomer mixture in it is 

called a particle. As the particle grows, monomer dif­

fuses from the monomer droplets to supply the reaction 

occurring in the particle. 

The particles are stabilized in the latex by sur­

factant molecules which cover the surface of the particles. 

The source of the surfactant molecules is the micelles, 

which dissolve as needed to provide surfactant for sta­

bilization. Eventually the total surface area of the 

particles becomes so large that all of the surfactant is 

required for stabilization of the latex particles. At this 

point micelles disappear, and nucleation of new particles 

ceases. The number of particles will remain constant for 

the remainder of the reaction, unless additional surfactant 

is introduced into the latex so that micelles again are 

formed. 

Eventually a particle containing a growing polymer 

chain will capture a second free radical. The free radi­

cals are extremely reactive, and a particle is very small 

so that the probability of having more than one growing 
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polymer chain in a particle is very small. As a result 

the time average number of free radicals in a particle is 

one-half. 

Eventually the monomer droplets disappear. There is, 

however, a considerable amount of monomer still in the 

particles, and the reaction will continue until this monomer 

is polymerized. The final product is a latex containing 

tiny polymer spheres, ranging up to several thousand 

angstroms in diameter, stabilized in an aqueous base. 

Remarks on Radical Capture and Termination 

This description of the Smith-Ewart theory just pre­

sented is basic and very broad. Two points will be dis­

cussed in more detail, since they are of special interest 

in this investigation. Both have received considerable 

attention in the literature and are areas of uncertainty 

in the emulsion polymerization mechanism. These are radi­

cal capture by particles and micelles and termination in­

side the particles. 

Smith and Ewart assumed that the process of radical 

capture was governed by the ordinary laws of diffusion (4#). 

According to diffusion theory, particles would capture free 

radicals proportionally to the radius of the particle. 

Gardon has proposed that the capture of radicals is by a 

mechanism described by a collision theory (9)- In this case 
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the surface area of a particle would determine the rate of 

radical capture. The models of Watterson et al. , Parts 

et al. (36), Harada et al. (19), and Sato and Taniyama (>+3, 

'+'+) all assume that radical capture is independent of 

par.icle size, although they have not emphasized this in 

their discussions. The simple model used by these investi­

gators does not appear to have received much acceptance. 

It is difficult to differentiate between the radical cap­

ture models because they predict results which are not 

drastically different, so that experiments which would 

clearly differentiate are difficult to devise. Fitch and 

Shih attempted to determine which of the radical capture 

models is most nearly correct by studying the nucleation 

of particles (7). Their experimental results were closer 

to results predicted b:/ the diffusion mechanism, but were 

nevertheless inconclusive. DeGraff and Poehlein attempted 

to distinguish between the collision model and the diffu­

sion model by analysis of molecular weight data, but their 

results were also inconclusive (5). 

The second process of special Interest in this in­

vestigation is termination inside the particles. Smith and 

Ewart C-i-B) realized that termination may not be instantan­

eous and that multiple radicals may exist simultaneously in 

a particle. Their mathematical description of a batch 

emulsion polymerization involved a quasi steady state 
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balance for the number of particles containing n free 

radicals. They were able to solve the numbers balance 

only for three limiting cases. The limiting case which 

best described their experimental data was based on the 

average number of free radicals in a latex particle being 

one-half. This corresponds to the assumption of in­

stantaneous termination and the on-off growth mechanism 

of a latex particle. Stockmayer (^9) and 0'Toole (33) 

were later able to solve the quasi steady state numbers 

balance without the assumption of instantaneous termina­

tion, and they calculated the average number of free rad­

icals in a particle as a function of particle size. Their 

calculations indicated that for very small particles the 

average number of free radicals is one-half, but as parti-

/-i ! ci ci •7Q -i noT-QQ ooc! rVta mrpT'n D-p nnTnhRT" nf T-anlfHls In­

creases. The change with particle size is very gradual 

initially but as the particle size is further increased, 

the average number of free radicals in a particle becomes 

a very strong function of particle size. Gardon obtained 

nearly identical predictions of the average number of free 

radicals in a particle when he solved the time dependent 

numbers balance (11), verifying the validity of the steady 

state assumption of Stockmayer (^+9) and O'Toole (33)' 

Because of the difficulty, if not impossibility of 

determining the number of free radicals in a particle 
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directly, experimental verification of the presence of 

multiple radicals has necessarily dealt with observance 

of the rate of polymerization and molecular weight. 

Gardon (11) presents the most convincing analysis. He 

has applied his calculations of the average number of 

growing polymer chains in a particle to predictions of 

reaction rate and molecular weight in batch emulsion 

polymerization. By his analysis he was able to explain 

the details of the time dependent rate of polymerization 

and time dependent molecular weight behavior for several 

monomers. 

Previous Investigations of Molecular Weight 

Molecular weight in batch emulsion polymerization 

UO-dX V _LO C. xctv-.ov-'i XiJ. IUJ.J.AXXX5 

physical characteristics of a polymer. For this reason 

studies of molecular weight are frequently included in 

batch emulsion polymerization investigations. The primary 

emphasis has been the determination of the effects of 

initiator and surfactant concentrations on the molecular 

weight of the product and determination of the time de­

pendent molecular weight behavior. 

The first published study of the effect of initiator 

concentration, surfactant concentration, and temperature 

on molecular weight in a batch reactor was that by Smith 



11 

(^7) who thoroughly examined the effects of these variables 

on molecular weight for batch polystyrene emulsion polymer­

ization. Wiener (55) and Brodnyan et al. (3) performed 

similar, but less extensive studies, for vinylidene chlo­

ride and methyl methacrylate respectively. More recent 

investigators have begun to include theoretical calcula­

tions of molecular weight in their research. Watterson 

et al. (5^) and Parts et al. (36) predicted molecular 

weights using a simple model which assumed that radical 

capture is independent of particle size. They predicted 

that molecular weight would rise to a maximum and then 

level off during the course of a batch reaction. Harada 

et al. (19) and Sato and Taniyama (44) used a model simi­

lar to Watterson's but much more detailed and complete. 

Harada, like watt-prsnn ei. »! . . introduceu an adjustable 

parameter and consequently were able to fit their calcu­

lated values to their experimental molecular weight-con­

version data. Sato and Taniyama were also able to obtain 

agreement with their experimental and predicted molecular 

weight data, but it is not clear if their predictions were 

fitted to the data using their calculated parameters or if 

their predictions used values of parameters taken from the 

literature. Saidel and Katz (42) studied the affects of 

random radical arrival on molecular weight. They used a 

partially stochastic model to predict that molecular weight 
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as a function of conversion would rise to a maximum and 

then decrease. They did not collect experimental data but 

qualitatively compared their predicted values to values 

found in the literature and concluded that the trends were 

similar. 

Gardon has performed the most extensive and impressive 

study of hatch emulsion polymerization to date, both theo­

retically and experimentally (9, 10, 11, 12, 13, l4). His 

work is based primarily on the Smith-Ewart theory, but his 

comprehensive analysis also takes into account the effect 

of multiple radicals on polymer particles. His analysis 

of molecular weight in batch emulsion polymerization pre­

dicts that molecular weight is proportional to the sur­

factant-initiator ratio raised to the 0.6 power and that 

molecular weight increases to a maximum and then decreases 

during the course of the polymerization reaction. His 

laboratory data confirm the trends predicted by his cal­

culations for several different monomers. 

Several investigators have studied somewhat different 

aspects of molecular weight than those discussed above. 

Stryker et al. (50) investigated the emulsion polymeriza­

tion of ethylene and determined that a chain transfer re­

action between the growing polymer radicals and the 

emulsifier molecules was responsible for producing an 

unusually low molecular weight product and an inverse 
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dependence of molecular weight on emulsifier concentra­

tion. Morton et al. (31) fractionated a polystyrene latex 

according to particle size in order to determine the re­

lationship between particle size and molecular weight in 

the same latex. They measured molecular weight for two 

latex fractions, having mean diameters of 800 & and 4-00 â 

and found molecular weights of ^.6 x 10^ and ̂ .8 x 10^ 

gr/mole respectively. They concluded that particle size 

had no effect on molecular weight. 

Molecular weight in continuous emulsion polymerization 

Studies of continuous emulsion polymerization systems 

have not been published as extensively as have studies of 

batch systems, although single continuous stirred tank re­

actors, multiple continuous stirred tank reactor systems, 

and tubular now reactors are widely used industrially (6). 

Patents on continuous emulsion polymerization processes 

are copious and date back to 1937 when I. G. Farbenindustrie 

filed for a patent on a process for the manufacture of 

styrene-butadiene copolymer rubber (6). However inmost 

commercial systems, reactor type and operating conditions 

are evidently determined by experience, since thorough 

kinetic studies of continuous emulsion polymerization have 

not been reported until recently (32). 

The earliest published kinetic study of continuous 
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emulsion polymerization is that of Gershberg and Longfield 

(151. Experimentally they found that the rate of polymer­

ization is independent of initiator concentration, while 

molecular weight is inversely proportional to initiator 

concentration. Consequently they concluded it is possible 

to increase the molecular weight without at the same time 

decreasing the rate of polymerization. 

Several investigators have used models other than 

that of Smith and Ewart to predict the results of contin­

uous emulsion polymerization. Sato and Taniyama (^3) ex­

tended the model they had used to describe a batch reaction 

to a series of continuous stirred tank reactors. The model 

treated micelles and latex particles like molecules of a 

chemical species which reacted with free radicals in a man­

ner independent of size. Both calculated and experimental 

results agreed with those of Gershberg and Longfield (15)• 

Nomura et al. (32) used a model similar to that of Sato 

and Taniyama (43) to describe emulsion polymerization in a 

series of stirred tank reactors. Their experimental and 

predicted results were also similar to those of Gershberg 

and Longfield (15). 

The most complete data for a continuous emulsion 

polymerization was obtained by DeGraff (4). He used an 

approach much like that of Gershberg and Longfield (15) 

for predicting the numbers of particles and reaction rates. 
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Molecular weights were predicted from the ratio of the 

calculated rate of reaction to the calculated rate of rad­

ical production. Although his individual predictions were 

in error by as much as a factor of two, his experimental 

and theoretical values both indicated that molecular weight 

increased with surfactant concentration to the first power 

and decreased with initiator concentration to the first 

power. His predictions of molecular weight as a function 

of residence time were quite different from his experi­

mental data. His predictions indicated that molecular 

weight should vary approximately as residence time to the 

-2/3 power, while his experimental data showed that 

molecular weight was nearly independent of residence time. 

Later DeGraff and Poehlein (5) used a different ap­

proach to calculate molecular weights for a continuous 

system. They used a molecular weight distribution derived 

by Katz et al. (22) together with a predicted particle 

size distribution to obtain an overall molecular weight 

distribution. This approach and the approach used by 

DeGraff (y-) predlcLed. nearly identical results. 
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THEORETICAL PREDICTIONS OF MOLECULAR WEIGHT 

In the previous sections the concepts of emulsion 

polymerization have been described, and pertinent prior 

investigations have been reviewed. In this section these 

will be applied to predict the molecular weight of polymer 

produced in a continuous stirred tank reactor. 

Our physical picture of emulsion polymerization is a 

series of randomly occurring events. It follows that the 

most direct model of emulsion polymerization would also be 

based on a series of randomly occurring events. Any con­

tinuous model for this type of process would necessarily 

require assumptions, the validity of which can be difficult 

to assess. In this work a Monte Carlo model has been de­

veloped which describes emulsion polymerization by a numer­

ical siiuulatiun ui Lhe uiaxiy ruiiv.ui ily uuuurrlii^ cvciits whicli 

determine the history of a Intex particle. ¥e have at­

tempted in this model to include all physical factors felt 

to be important in particle and chain growth. For the lim­

iting case of instantaneous termination a deterministic ap­

proach was used to develop an approximate analytic expres­

sion for molecular weight. 
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Monte Carlo Simulation 

For the Monte Carlo simulation, the Smith-Ewart theory 

was used as the basic description of the mechanism of emul­

sion polymerization. The deviations from the Smith-Ewart 

theory and the assumptions used in the model are listed 

below; 

1. The significant events in determining the history 

of a latex particle are radical capture, termina­

tion, and chain transfer to monomer. 

2. For a given latex, the probability of any event 

occurring in a particle is dependent only on the 

state of the particle. The size of the particle 

and the number of free radicals in a particle 

determine its state. 

3. Two events cannot take place simultaneously. 

4. Free monomer is present in the latex at all times. 

5. The total surface area of all particles and 

micelles in the latex is equal to the surface 

area associated with the total surfactant con­

centration in the latex. 

6. The monomer concentrationof the particles is constant 

at all times and is independent of particle size, 

7. The volumetric rate of growth of a particle is 

dependent only on the number of free radicals in 

a particle for a given latex. 
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8. Free radicals are captured by particles at a rate 

proportional to the surface area of the particle. 

9. When a particle leaves the reactor, it is in­

stantly quenched by inhibitor killing all growing 

polymer chains. 

10. In the reactor, termination of growing polymer 

chains in latex particles is by combination. 

11. The exit age distribution of latex particles is 

that of an ideally mixed continuous stirred tank 

reactor. 

The heart of this Monte Carlo simulation is a prob­

ability expression for the time at which the next event 

will occur in a latex particle. The probability expres­

sion depends on the rates of the events that can occur. 

Rate expressions for radical capture, termination and 

chain transfer are given below: 

(1) 

r, = k* (ir4-) (2) 
" "A'p "A'p ^ 

^tf ~ ̂ tf^W^Vp^^^^VA (3) 

where 

r = rate of radical capture by a particle, events/sec 
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R = rate of production of free radical in the re­

actor, radicals/1 sec 

s = total surface area, cm A 

r = particle radius, cm 

^tf ~ f&te of chain transfer in a particle, events/sec 

= chain transfer rate constant, 1/mole sec 

n = number of free radicals in the particle 

[M] = monomer concentration in the particle, mole/1 

Vp = particle volume, 1 

- Avogardo's number, molecule/mole 

r^ = rate of termination in a particle, events/sec 

= termination rate constant, 1/mole sec. 

In Equation 1 the assumption has been made that particles 

and micelles capture free radicals in proportion to tneir 

surface area and that the total surface area of the system 

is equivalent to S, the surface area of the surfactant 

molecules in the system. 

To use these equations values for the constants must 

be available. The rate of radical production, R, can be 

determined by 

a = 2k^[I]H^ (h) 

where 
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= initiator decomposition rate constant, sec"^ 

[I] = initiator concentration in the reactor mole/1. 

The total surface area of the latex, S, can be calculated 

from 

S = ag[8]N^ (5) 

where 

[S] = the surfactant concentration in the reactor, 

moles/1 

a = the area covered by one molecule of surfactant, 
p 

cm /molecule. 

The monomer concentration in a particle can be expressed 

more conveniently in terms of 0, the volume fraction 

monomer in a particle. 

[M] = 1000 (6) 
o 

where 

p - monomer density 

M = molecular weight of monomer. 

Our rate expressions can be more simply expressed as 

^c ~ - ccr^ (7) 
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k, n(n-l) p n(n-l) 

= 1000 = Tin (9) 

where 

a = ^ (10) 

3000 k, 
O — ^ / T n N 
P - i+irN 

A 

1000 k. op 0 
1  =  — •  ( 1 2 )  

Since the probability of any event occurring in a small 

time increment &t is r%&t, the probability of that event 

nob occurring in the time increment ot is (l-r^oi;} where 

r^ represents the rate at which any single event occurs. 

The probability that no event occurs in the time increment 

&t is 

_ / Tin Avmnt \ . . . , _ . 

t^ocours in'&t^ = ^ - Hj; 

The probability that no event occurs in a finite time 

tg -t^ = Z 6t^ is the product of the individual terms. 

p(no event^oocurs) . p . , [1 - (r, ] 

(14) 
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In the limit for very small values of 6t, this becomes 

r ^ 2  
P = exp(- (r^+r^+r^^)dt) . (15) 

h 

Because the rates of capture and termination are functions 

of particle size, the time integral in Equation 17 will be 

transformed to an integral over particle radius through 

use of the particle growth equation. The growth equation 

for a single polymer particle may be taken to be 

d(% ̂  r^(l-0)p^) k^n0p 

^ dt ^ ~ 1000 

or 

dr 3 
nr. 

= Kn (16b) 

where is the polymerization rate constant in 1/mole sec 

and 

EfWnrwTTTïTWY . — w p ' 

Using Equations 7, 8, 9 and 16, Equation 15 can be éval­

uât ed. 

P = exp[- ̂ (4-4^ -

(17) 
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When the particle contains no free radicals, the rates of 

chain transfer and termination are zero, and the particle 

size does not change. Therefore the following expression 

is obtained. 

P = exp[- -^(tg -1^) ] n=0 (18) 

If the rates of capture, termination, and chain transfer 

change negligibly between events, the following approxi­

mation can be used. 

P - exp[(—^ - PoXn-l) _ -t^)] (r >750 i) 

(19) 

For calculational purposes this equation was used for 

•no 4 nl o o T.rT 4-In rr-ncio-t-ûT» -f-Vio-n Q t.t-i -f-V» v^ûrrl-irf-î'KTû 
jy V 91 ^  ̂  ±x ^ J. V XA«^J.X i y Xi. wo. w j.i xxv.^ v/ 

error. 

Equations 17, l8, and 19 can be arranged in terms of 

the radius at the time an event will occur in a particle 

or the time at which the event will occur, 

+ s '•i 

^ Ij] +1 1,3 n /o (20) 
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-InP 
r >750 & (22) 

n /O 

Time and particle size are related through the in­

tegrated particle growth equation 

For use with Equation 22, an approximate expression 

for the integrated particle growth equation was used. 

This was necessary because of the round off error obtained 

when Equation 23 was used to calculate the radius of large 

» 

Equations 20, 21, 22, 23, and 2h are the basic equa­

tions used in the Monte Carlo simulation. For the simula­

tion a random number was generated for use as the proba­

bility P, and the appropriate equations were solved to ob­

tain the size and age of the particle when the next event 

occurred. Use of all equations, except Equation 20, is 

straight forward. Solving Equation 20 for the radius of 

the particle at the next transition is an iterative process. 

Since the function 

r| - r^ ~ KCtg -1^)n (23) 

(24) 
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(25)  

is monotonically increasing with r and a lower bound for 

r is known, r^ can be determined as accurately as desired 

by trial and error. Numerically this is a simple and rapid 

procedure. 

Once it has been determined when the event will occur, 

it must be determined which event will occur. This must be 

a random determination and can be based on the conditional 

probabilities of radical capture, termination, or chain 

transfer, which are given below. 

The occurrence of an event causes a change in the size 

and/or number of growing chains in a polymer particle. When 

a capture event occurs, a new chain of length zero is cre­

ated. When a termination event occurs, two of the growing 

polymer chains are chosen at random for termination and the 

number of growing chains is reduced by two= The length of 

(26) 

r,. 

''t = (r^+r^+r,.j.) K Z f )  

, , "tf 
tf +r.. + r, .p) (28) 
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the dead polymer chain is the sum of the lengths of the 

two terminating chains. When chain transfer occurs, the 

number of growing chains remains unchanged. One of the 

growing chains is selected at random. Its size is set to 

zero and a dead polymer chain is created with the size of 

the transferring chain. 

The initial state is chosen to be a particle 50 â 

in diameter with one growing polymer chain of size zero 

in it = The complete history of a particle was constructed 

by repeatedly determining when the next event would occur 

and the size of the particle at that time. The number and 

size of the growing polymer chains were also calculated. 

Simply determining the history of the particle, how­

ever, is only part of the problem. To extract useful in­

formation from the simulation of the growth of a single 

particle, an elaborate bookkeeping procedure is necessary. 

The number and length of all growing chains must be known. 

The number of dead polymer chains and the sum of the weights 

of the dead polymer chains must a^so be known if number av­

erage mclccular weights are to be calculated. If weight 

and viscosity average molecular weights are of interest, 

the sum of the squares of the weights and the sum of the 

weights to the (1+a) power are also needed. Here a is the 

power parameter in the Mark-Houwink equation, which is given 

below. 
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[n] = (29) 

This equation is commonly used to obtain the viscosity av­

erage molecular weight from the intrinsic viscosity of a 

dilute polymer solution. 

In order to determine properties of the entire latex, 

the properties of the particle as a function of size must 

be weighted according to the numbers of particles of that 

size in the product and summed over all particle sizes. 

Numerically this procedure was carried out by utilizing 

diameter intervals. As a particle "grew" through a diam­

eter interval, the following sums were recorded for that 

interval: 

1. nSx^ 

2. m .  
-L J 

3. 

4. ZMj 

5. ZZx, 

Here 

% = (e 
-t-| /% -tpA 

e ) = the fraction of particles leav 

ing the reactor between times 

t]_ and 0 2 
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n = the number of living and dead polymer chains in 

a particle and 

Mj = the molecular weight of the polymer chain. 

The inner summation is over all live and dead polymer chains 

in the particle. The outer summation is over the events 

which occurred while the particle was in that interval. 

When a particle passed from one interval to the next, the 

growth of live chains in the particle for one interval was 

based on the time spent in that interval. Inclusion of 

live chains in these summations was based on the assumption 

that when a particle left the reaction vessel, it would be 

quickly quenched by inhibitor which would instantly termi­

nate the growing chains. 

The history of a latex particle was followed for five 

residence times of the reactor. Over 99 percent of the 

particles would have been discharged from an ideally 

stirred vessel in this time. 

The data accumulated for the history of one or more 

particles allows calculation of the following: 

1. Number, weight and viscosity average molecular 

weights as function of particle diameter. 

2. Number, weight, and viscosity average molecular 

weights of the latex. 

3. Particle size distribution of the latex. 
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4-. Viscosity average molecular weight of all parti­

cles above a given diameter as a function of 

weight fraction of total latex polymer represented 

by those particles. 

Item 4- is of less general interest, but is of specific in­

terest to this investigation since experimental data was 

obtained in this form. 

A flow diagram for the numerical computation is given 

in Figure 1. A listing of the computer program is given in 

the Appendix. 

Before the Monte Carlo simulation can be confidently 

used, an estimate is needed of the reliability of the pre­

dictions. To obtain an estimate of the standard deviation 

of the particle diameters and the molecular weights of the 

latex. Mnnte Carlo simulations were obtained for ten parti­

cles. The results were analyzed to obtain the mean and 

standard deviation of each predicted quantity. The results 

are summarized in Table 1. 

One way to increase the reliability of the results 

would be to run the Monte Carlo simulation for more than 

one particle and to estimate the product properties from 

the combined data. This would decrease the standard de­

viation of the predicted quantities by approximately Jin 

where n is the number of replications. Since a large por­

tion of the standard deviation is due to events which take 



Figure 1. Flow diagram for Monte Carlo simulation of 
growth of a latex particle 

DIA = diameter of a particle 
DNEW = diameter of a particle when next 

event occurs 
n = number of growing polymer chains in 

a particle 
M(i) = molecular weight of a dead polymer 

chain 
c(j) = molecular weight of a live polymer 

nhw I ri 
NCHAIN = number of terminated chains 
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Table 1. 

Vari­
able 

Mean and standard deviation for Monte Carlo data 
kp = 756 1/mole sec 

= 4.92 X 10® 1/mole sec 

k^^ = 0.0^-5^ 1/mole sec 

T = 32.9 min 

For a single particle 
(based on 10 runs) 

Mean 
Standard 
Deviation 
(9df) 

For multiple particles 
(based on 2 runs) 

Standard 
Mean Deviation 

(Idf) 

D. n 

D, 

D. 
V 

13^+4 i 

I52h 

1665 

60 

36 

26 

1358 

1527 

1665 

1.5 

2 . 0  

1.6 

M 
w 

0.905x10 

1.739 

1.930 

6 
0.026x10^ 

0.103 

0.139 

0.921x10' 

1.799 

1.998 

0.037x10" 

0.073 

0.076 
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place early in the history of the particle, an alternative 

method of decreasing the variances would be to replicate 

only this portion of the particle history. For the im­

plementation of this technique the data was replicated 27 

times for diameters 50 & to 1000 â, five times for diam­

eters 1000 â to 1600 and two times for diameters above 

1600 â. The means and standard deviations for these cal­

culations based on two replications are shown in Table 1 

and compared to the means and standard deviations of data 

calculated when one particle was observed, the standard 

deviation of the various mean diameters has decreased from 

26-60 i when the history of individual particles were used 

to several angstroms when multiple particles are used. 

The standard deviations of the molecular weights are less 

affected. The improvement using the multiple particle 

technique was made with only a small increase in computer 

cost over that for an individual particle. 

Approximate Analytic Expressions 

The Monte Carlo simulation just presented can be used 

to predict the behavior of a continuous emulsion polymeri­

zation reactor. However it is a numerical technique and is 

less convenient to use than an analytic expression. In 

this section analytic expressions will be derived for the 

number and weight average molecular weights of polymer in 
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a particle and polymer in the latex with the assumption 

that chain termination in the latex particles is in­

stantaneous. 

If the rates of radical capture and chain transfer 

do not change significantly during the lifetime of a grow­

ing polymer chain, the probability that no event occurs in 

a particle from time zero to time t is 

n/no event occurss _ "^^c ̂ ^tf^^ 
^^from t=^ ~ ® w V w o 

If this period of time is followed by the occurrence of an 

event in the next time increment ôt, the probability is 

p/ next event occiiJs \ / \ 
between time t and t+6t c tf 

(31) 

The molecular weight of a growing polymer chain is 

given as 

M = kp0Pot (32) 

where t is the time of growth of the polymer chain. In a 

particle of radius r, the time of growth is not single 

valued, but has a statistical distribution given by Equa­

tion 31. If the mean of this distribution is used in 

Equation 32, the number average molecular weight of polymer 

produced under stationary conditions is obtained. 
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00 

-(r +r,.)t 
\s = VPQ J +rtf) e at (33) 

If the rates of radical capture and chain transfer do not 

change significantly during the lifetime of a growing 

chain, we can obtain 

\s = 

The weight average molecular weight of polymer produced 

under stationary conditions, can be derived similarly 

P -(r +r,.)t 
(kpGfp^t) e dt 

(35) 

J (yp„t)(r^+r^j.) e 

(  ̂ \ +-
•  V  X  .  - r  ± - n / v  

dt 

2k_0Po 
«36) 

For a polymer particle the number and weight average 

molecular weights can be determined by an appropriate 

summation over all chains in the particle, as given in the 

following equations. 
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M. np 

% n.M. 
i ^ ̂  

ri 

(37) 

% 
Z ¥.M. 
i ^ ̂  
E w. (38) 

Here n^ and are the number and weight of chains with 

molecular weight in a particle. The number of chains, 

^i' (I'c The weight of chains, w^^, is 

Combining these expressions for n^ and w^^ and Equations 

3^5 36, 37; and 38 and changing the summations in Equations 

17 and 18 to integrations yields the following expressions. 

1 
2 c -tf (r„ +r,f) dt 

M.. np 
1 
2 (r^+r^j.) at 

(39)  

n 

1 

\o 

21 ,2 dt 
0 ^tf' 

1 
2 

k 0p 

('c (r Xr°j) « 

(4#) 
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Over the life of a particle, the rate of radical capture 

changes according to Equation 1. 

r, = !±fS .2 (1) 

By the use of Equations 1, 39, ̂ 0 and the Smith-Ewart 

particle grovjth equation 

to change from integration over time to integration over 

particle size, we can obtain the number and weight average 

molecular weight of a particle of size r. 

% = (g-)'"'] (^3) 

The number and weight average molecular weight can be 

calculated from Equations 3? and 38 if the summations are 

taken over all chains in the latex. An equivalent method 

would be to weight the contribution of a particle by the 

number of particles of that size (or, equivalently, of 

age) in the latex. By expressing the fraction of particles 

with age t using the exit age distribution, the number and 
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weight average molecular weights of the latex can be 

written as 

1 
2 

"n = 

(r^ +r,.) 
,-t/T 

2 J '"c "tf/ T 
0 

dt 

(44) 

1 
2 

^w = 

1 
2 

(k:n#Pn) *-t/^ 

0 

2(r4.+r^.<,) —-2—2 dt 

dt 

These equations reduce to 

VPq 
^ " TiTT 

X  H  M  \ X / <  
g -LA.T; • i ii.bbbj 

(46) 

^R(KT) 273 

e-22 dz 

O [z^^2 + 
itfS 

4-TrR(KT) 2/1^ 

(47) 

When the rate of chain termination is zero, both the number 

and weight average molecular weights vary as S/R and 

As expected this dependence decreases as chain transfer be­

comes more important, until at the limit both number and 

weight average molecular weights are independent of S/R 

and T. 
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EXPERIMENTAL INVESTIGATION 

Apparatus, Materials, and Techniques 

Batch latexes were prepared in a one quart, wide mouth 

bottle with a screw top. In the top were cut openings for 

a three blade stainless steel stirrer, a thermometer, a 

single stainless steel baffle, a nitrogen purge line, and 

a sampling port. The reactor was placed in a constant 

temperature bath so that the contents of the reactor were 

maintained at 60 + 2 °C. Prior to reaction the water and 

the monomer were purged by bubbling prepurified nitrogen 

through them for approximately 30 minutes. The reactor was 

blanketed by nitrogen at a pressure of about 20 cm of water 

throughout the reaction to minimize the chance of oxygen 

entering the system. The reaction was stopped by removing 

the reactor from the temperature bath and adding an amount 

of tertiary butyl catechol to the reaction vessel moderately 

in excess of that necessary to counteract the initiator. 

Continuously prepared latexes were produced in a 290 

ml cylindrical glass vessel with a round bottom. The 

top of the vessel was a Teflon plate with openings for a 

glass stirring rod with a Teflon paddle, a thermometer, 

feed lines for water solution and monomer, a thermoregu-

lator, and a nitrogen purge line. The reaction vessel was 

heated by a Glas-Col electrical heater which was controlled 
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via a relay by the thermoregulator. A variac was used to 

adjust the output of the heater. Reaction vessel tem­

peratures were maintained at 60 + 0.5 °C. Feed solutions 

were pumped by two Milton-Roy positive displacement mini-

pumps. The stirring rate was maintained at 200 RPM by a 

Cole-Parmer constant speed stirring unit. Throughout the 

run prepurified nitrogen blanketed the reactor at a pres­

sure of about 5 cm of water. A schematic of the contin­

uous apparatus is shown in Figure 2. 

Batch particle size distributions were obtained by 

ultracentrifuge analysis using a technique similar to that 

developed by Peppard (39). A Beckman Model E analytical 

ultracentrifuge was used with schlieren optics. Particle 

densities were obtained by centrifuging the latex in two 

media having different densities. Water and 10 pcrcent 

sucrose solution were used for the two media. Some of the 

particle size distributions were verified from electron 

microscope photographs of the latex. 

The particle size distribution for the continuously 

produced latexes could not be obtained by ultracentrifuge 

analysis, since these latexes were too turbid. Electron 

microscope photographs were used to determine these parti­

cle size distributions. 

Polymer molecular weights were obtained by dilute 

solution viscometry. For preliminary batch experiments 



Figure 2. Schematic of reactor used for preparation 
of continuous latexes 
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the one point method of Maron was used to determine in­

trinsic viscosities (26), but for continuous experiments 

intrinsic viscosities were obtained by extrapolation of 

viscosity-concentration curves to zero concentration. 

Viscosities of the solution were measured according to 

ASTM recommended procedures (1). Molecular weights were 

calculated using Equation 29 

Here [ri] is intrinsic viscosity and is viscosity aver­

age molecular weight. The values of the constants K and 

a are those of Goldberg et al. (16). Toluene was used as 

the solvent at 30°C. 

Latex fractionation according to particle size was 

achieved using the technique of fractional creaming with 

sodium alginate. This technique will be described in de­

tail in a later section. 

The polymer in the batch latexes was recovered by 

diluting the latex with water and adding sodium chloride 

until the solids coagulated. The mixture was then fil­

tered, and the residue was washed alternately l'âth hot 

deionized water and methanol until the effluent did not 

taste of salt. While this method for determining the 

presence of sodium chloride is rather crude, it is very 

quick and has a lower detection limit of several hundred 

(29) 



parts per million. The residue was washed several addi­

tional times with hot deionized water before it was dried. 

While this procedure removed the sodium chloride, it did 

not remove all of the sodium alginate. Consequently it 

was necessary for the polymer residue to be dissolved in 

toluene and filtered to remove any traces of sodium 

alginate. The polymer in continuously produced latexes 

was recovered by coagulation of the latex with sodium 

chloride. To remove the impurities with reasonable time 

expended it was necessary to wash the residue with acetone 

until a pure product was recovered. This step is certainly 

undesirable since the lower molecular weight fractions of 

polymer would also be removed. One sample was purified 

with methanol in order to determine if error introduced 

by washing with toluene could be tolerated. The methanol 

purification required many washings of the polymer and 

lasted 5-6 hours. Comparison of the results from the 

methanol purification and the acetone purification showed 

that the effect of acetone washing of polymer had neg­

ligible effect on the viscosity average molecular weight. 

Prior to polymerization^ the styrene was distilled 

by vacuum distillation at approximately 75 °C and 690 mm 

Hg vacuum with a reflex ratio estimated to be about 2/1. 

It was stored in a refrigerator until it was used or for 

60 days at which time it was redistilled. 



The water used was deionized tap water which was 

passed through a Barnstead water purification cartridge 

to remove organic impurities. 

Table 2 shows the source and purity of the chemicals 

used in the experimental investigation. 

Table 2. Source and purity of reagents used in the ex­
perimental investigation 

Chemical Source Grade 

Potassium 
Persulfate 

Tertiary Butyl 
Catechol 

Sodium 
Pentachlorophenate 
(Santobrite) 

Sucrose 

Sodium Lauryl 
Sulfate 

Nitrogen 

Toluene 

Styrene 

Sodium 
Alginate 
(Kelcosol) 

Matheson. Coleman, 
and Bell 

Eastman Kodak 

Monsanto 

Baker 

Sargeant 

Cook Welding Supplies 

Baker 

Cope Plastics 

Kelco 

Reagent 

Practical 

Technical 

Reagent 

Technical 

Prepurified 

Reagent 

Ungraded 

Ungraded 



46 

Latex Fractionation 

Two potential methods of latex fractionation were 

tested before the fractional creaming technique was de­

veloped. The first technique involved the use of a col­

umn packed with porous glass beads. The beads were 120/200 

mesh and had a mean interval pore diameter of 1000 â. The 

supplier was Electro-Nucleonics, Inc. A column packed 

with these porous glass beads should have been able to 

fractionate a latex according to particle size, since the 

larger particles would go around the beads while small 

particles would enter the pores in the beads. Consequently 

larger particles should have a residence time in the col­

umn less than that of smaller latex particles. To test the 

column two monodispersed latexes having mean diameters of 

approximately 1200 i and 500 were produced usirig i/né 

procedure of Williams and Grancio (5'7). A mixture of the 

two was passed through the column. Design calculations 

for the colujnn showed that a wide separation should occur, 

and two well separated latex fractions should emerge from 

the column. When the experiment was performed, only one 

latex band flowed out of the column. After this experi­

ment was performed several times with the same results, an 

India ink tracer was passed through the column. The parti­

cles of carbon black in the ink were small enough to pass 

through the pores in the glass beads, so that the retention 
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volume for very small particles could be determined ex­

perimentally. However, the retention volume of the inlc 

was the same as that for the latex and also very close to 

a calculated retention volume for large particles. This 

suggested that the latex particles had plugged the proes 

in the glass beads. 

The second attempted method of fractionation was by 

a centrifugation technique widely used in biochemical re­

search to separate very similar macromolecules. It was 

suggested by Dr. Malcolm Rougvie of the Department of 

Biochemistry at Iowa State University. The technique in­

volved centrifuging a mixture of two monodisperse latexes 

in a cell with an imposed density gradient. The function 

of the density gradient was to provide stability under 

o vnri 4- n mnv-»nm-i'7Ck /-kn "ntrci «-*4- nrw-i 4 vi In «a — WS-'J.XWJ. U. .i. L* V ^ V 4. J. V V _l_ V./ O-XX <>J J. U. 

fuging medium. The density gradient was produced by plac­

ing in the cell a sucrose solution whose concentration de­

creased linearly from the top to the bottom of the cell. 

After a density gradient was placed in the centrifuging 

cell, a layer of a latex mixture, similar to that used in 

the experiments vri.th the packed column, was gently placed 

on top of it, and the cell was centrifuged at 15,000 RPM. 

After the centrifuging was completed, the cell was removed 

and examined= Samples were taken from several different 

positions in the cell and analyzed using the analytical 
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ultracentrifuge. This procedure was performed for a series 

of experiments in which sample sizes, density gradients, 

and centrifuging times were varied, but no separation was 

achieved. 

The third method investigated for fractionation of a 

latex according to particle size is called fractional 

creaming. The technique used in this investigation was 

similar to that used by Schmidt and Biddison for determin­

ing particle size distributions of latexes (h^). The 

procedure itself is quite simple. It consists of merely 

adding a measured amount of sodium alginate to a latex 

sample. Upon setting, the mixture will separate into two 

phases. One phase will contain the larger particles, and 

the other phase will contain the smaller particles. When 

a batch-produced latex was fractionated, the layer con­

taining the large particles was found at the bottom of the 

separating vessel. When a continuously-produced latex was 

fractionated, the layer containing the large particles was 

the top layer. The relative amounts of polymer in each 

phase is a function of the amount of a sodium alginate 

added. Therefore a series of samples can be prepared in 

which the amount of alginate is successively increased. 

The mean diameter of the particles in each phase will shift 

with each additional increment of alginate added. In this 

way a series of samples can be obtained in which the weight 
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fraction of polymer increases and the mean particle 

diameter decreases throughout the series. 

While the basic idea is very simple, the actual 

procedure used in the experiments is a bit more compli­

cated. Therefore a detailed description is given below. 

1. To 300-^00 gr of latex were added ^-.0 gr of 

sodium lauryl sulfate. The mixture was diluted 

with water to a volume of 1 liter. 

2. To 50 ml of the diluted latex mixture a weighed 

sample of sodium alginate solution was added. 

The entire mixture was diluted to a total weight 

of 200 gr. The sodium alginate solution was ap­

proximately 1.0 percent sodium alginate by weight. 

It also contained 0.1 percent sodium pentachloro-

phenate, the purpose of wnWrn whh to prevent 

bacterial grovrth. The amount of sodium alginate 

added to the sample ranged from 30 to 60 grams of 

1.0 percent solution. The exact amount was de­

termined by trial and error. When a series of 

fractionations was desired, the minimum level of 

sodium alginate was established for the first 

sample and was increased by 3 or 4 grams for each 

successive sample. 

3. These solutions were put into ssparatory vessels 

and allowed to set for one to two days to allow 
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separation of the phases to take place. The best 

separatory vessels were found to be glass tubes 

approximately 120 cm in length and with an inside 

diameter of 1.5 cm. These worked well for meas­

uring the volumes of the phases and for allowing 

for separation of the two phases. 

4. The height of each phase was measured, and the 

volume of each was calculated. 

5. The two phases were separated by removing the top 

phase by suction. 

6. Samples of both phases were dried to determine 

the solids concentration of each. 

7. A mass balance was used to determine the total 

solids content of both phases and the fraction of 

the total solids in each phase. For the purposes 

of these calculations, the sodium lauryl sulfate 

and the sodium alginate were assumed to be 

present in each layer at the same concentration. 

After the technique was developed, an experiment was 

performed, une purpose of which was tu determine the ef­

fectiveness of the fractionation and to compare the weight 

fractions of polymer calculated from a mass balance with 

that obtained by analysis of electron microscope photo­

graphs. A batch latex was fractionated using the procedure 

outlined above, and electron microscope photographs were 
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taken of the latex In the top and bottom phases. From 

these photographs the weight average diameters of the top 

and bottom phases were determined to be 750 & and 920 i 

respectively. The difference between these values indi­

cates that fractionation did indeed occur. However, the 

separation was not perfect. When the particle size dis­

tributions for the two phases were compared, a cut off 

diameter of approximately 800 & was obtained. This value 

represents an overlap of the two distributions of 20-25 

percent. That is 20-25 percent of the material in the top 

phase that would be in the bottom phase in an ideal sep­

aration and vice versa. This was also found to be typical 

of the quality of separation of a continuously-produced 

latex. 

A mass balance was applied to the experimental data 

for the batch separation and the weight fraction of polymer 

in the bottom phase was calculated to be 20.1 percent. 

The weight fraction of polymer in the bottom phase was 

calculated by analysis of the electron microscope photo-

vv uc cv pci vciiu = 

Description of an Experiment 

The idea behind the experiments is very simple--to 

fractionate a latex according to particle size and measure 

the molecular weight of each fraction so that molecular 
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weight could be determined as a function of particle size. 

However the experimental procedure involved a number of 

operations and was somewhat more complex than a brief 

description of the experiment would indicate. Therefore 

a detailed description of an experiment will be given 

below. 

1. A latex was produced by either a batch or a con­

tinuous process. 

2. The particle size distribution of this latex was 

obtained by use of an analytical ultracentrifuge 

or an electron microscope for batch-produced and 

continuously-produced latexes respectively. 

3. The technique of fractional creaming was used to 

fractionate 5 to 10 samples of the latex. Each 

sample contained a larger amount of sodium alginate 

than the previous, so that a series of fractionated 

latexes was obtained, each containing successively 

more polymer and having a smaller mean particle 

diameter. 

4. For each sample the two phases were separated, and 

the polymer was recovered from the phase contain­

ing the largest particles, 

5. The viscosity average molecular weight of each of 

these samples and of the entire latex was de­

termined. 
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RESULTS 

Batch Emulsion Polymerization 

Two batch experiments were performed as described in 

the previous section. The recipes for the polymerizations 

are given below for the two experiments. 

Exp 21 Exp 21 

Water l80 l80 

Styrene 100 100 

Potassium persulfate 0.15 1.0 

Sodium lauryl sulfate 5*0 5-0 

Both polymerizations were allowed to react to completion. 

Viscosity average molecular weights of the polymer produced 

in experiments 21 and 23 are $.70 x 10^ and 1.5^ x 10^ 

• J. u J- <_<, u v-z X vv ct w a.xx^x -uxx j.— 

ment 23 to reduce the molecular weight of the polymer, 

because it was anticipated that at high molecular weights 

chain transfer would be a dominan"' factor and would result 

in molecular weight being insensitive to particle size. 

Figure 3 shows the molecular weight plotted versus 

cumulative weight fraction for experiments 21 and 23. Un­

fortunately the data for experiment 21 is incomplete, but 

nevertheless these data for the two experiments appear to 

show the same trend. The highest molecular weight is found 

at the lowest cumulative weight fractions indicating that 



Figure 3* Viscosity average molecular weight as a func­
tion of cumulative weight fraction of polymer 
for batch emulsion polymerization 
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the highest molecular weight polymer is in the largest 

particles. A detailed analysis of this data was performed 

to infer the molecular weight as a function of particle 

size, but it was found that the results were extremely 

dependent on the shape of the curve drawn through the 

molecular-weight fraction data. Consequently this type of 

analysis is not reliable. However it can be concluded 

from the data that molecular weight is not a strong func­

tion of particle size and that the highest molecular weight 

is found in the largest particles. 

Based on considerations of the process of radical 

capture alone, one would expect molecular weight to be a 

decreasing function of particle size for both the diffusion 

and the collision mechanisms of radical capture. The fact 

that such a direct contrast exists between experimental 

data and theoretical expectations implies that some other 

phenomenon is responsible. Perhaps the explanation lies 

partially with the cause of particle size polydispersity 

in a batch reactor. Particles are larger than average 

because they have either grown for a longer time or because 

they contained multiple free radicals causing them to grow 

faster. Either of these situations would cause a higher 

than average molecular weight polymer to be associated 

with particles that are larger than average. It would be 

surprising however, if this alone could explain the trend 
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of the data in these experiments. 

Even if this data could be analyzed with more cer­

tainty, the meaning would probably be clouded since 30-50 

percent of the polymerization occurs after the free 

monomer in the latex disappears. Polymerization is not 

well understood under these conditions, but it is thought 

to be substantially different than in monomer-rich 

particles. 

Continuous Emulsion Polymerization 

Four experiments were conducted using the continuous 

stirred tank reactor and associated apparatus described 

previously. The recipe used in these runs is given below. 

water 180 parts by weight 

potassium persulfate 1.0 

sodium lauryl sulfate 5*0 

The four runs were at 60°C and with residence times as 

shown. 

Experiment 

2"+ 

Residence Time (min) 

26 

25 

32.9 

63.^ 

47.2 

27 47.2 
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After the latexes were produced, they were fractionated 

using the process of fractional creaming; the polymer was 

recovered from the latex fractions; and the viscosity aver­

age molecular weights were measured. In all experiments the 

reaction was carried out for at least nine residence times 

before a sample was taken for analysis. Electron micro­

scope photographs were taken of the latex samples, and 

particle size distributions were obtained. 

A tabular summary of particle size data, overall 

molecular weights, conversions and numbers of particles 

is given in Table 3 for the four continuous experiments. 

The number, area and volume average diameters were cal­

culated from the following equations. 

Zn. D. 
D = (W) 
n 

Sn^D? 
Da = ("9) 

V— TI3 

The values shown in Table 3 have been corrected to reflect 

the fact that latex samples are dried before they can be 

viewed with an electron microscope, and, as a result, 



Table 3, Summary of experimental data for continuous emulsion polymerization 

T5 _ _ _ __ Number of 
Experiment Conversion partloles^per 

24 32.9 14-10 15:^0 1680 1.17 X 10^ ±6.5% 8.56 X 10^3 

25 63.4 1950 2150 2310 1.01 x 10^ 40.2^ 7.92 x 10^3 

26 1+7.2 1710 1860 2050 0.92 x 10^ 25-0^ 7.44 x 10^^ 

27 47.2 1650 1800 1920 1.12 x 10^ 28.4^ 9.52 x 10^^ 
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particles that are observed do not contain any monomer. 

In making these corrections a value of the volume fraction 

monomer, 0 = 0.65, was used, and monomer and polymer volumes 

were considered additive. 

Figure h shows the molecular weight of the fractionated 

latex samples plotted versus the weight fraction of total 

polymer. The detailed shape of the curve drawn through the 

data points is uncertain due to the scatter, but the in­

creasing trend is evident. The trend indicates that the 

lowest molecular weight is found in the largest particles, 

and as the mean particle size in the sample decreases, the 

molecular weight increases. Looking at Equations k2 and 

^3, the approximate analytic expressions for molecular' 

weight as a function of particle size, we see that a de­

creasing trend is predicted. 

Before the Monte Carlo simulation could be used, 

estimates of the following parameters were required. 

1. Volume fraction of monomer in a particle, 0. 

2. Surface area per soap molecule, a^. 

3. Decomposition rate constant for initialor, k^. 

Polymerization rate constant, k . 

5. Termination rate constant, k^. 

6. Chain transfer rate constant, k^^. 

Of these parameters, a , k^, and have been reported by 



Figure k-. Experimental viscosity average molecular 
weights as a function of cumulative weight 
fraction for continuous emulsion polymeri­
zation 
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numerous investigators whose results are in general, if 

not excellent 5 agreement. The other parameters have also 

been widely investigated, but published results have been 

very divergent. As a consequence it became necessary in 

this investigation to determine which of the literature 

values could best be used to describe the experimental 

data. In some cases it was necessary to adjust the liter­

ature values slightly to obtain a good fit with experimental 

results. These adjustments were of the order of 10 percent 

or less. Table h summarizes the values of the parameters 

used in this investigation. 

Early in this investigation, the volume fraction of 

monomer was considered to be a function of particle size, 

as calculated by Morton et al. (31). Their theoretical 

predications for a latex particle are based on an equilib­

rium balance between the interfacial surface tension and 

the swelling force. Their equation contains two parameters, 

the interfacial surface tension and a polymer-solvent in­

teraction parameter, both of which are difficult to estimate 

accurately. The surface Lension is particularly difficult, 

since it can be a function of not only surfactant concen­

tration, but also the temperature, the concentration of 

salts in the latex, and even the conditions of synthesis 

(l40. Using the values for the two parameters given by 

Gardon (l40; the equation of Morton et al.- (31) predicts 0 
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Table 4. Summary of the parameters used in this investi­
gation T = 60 OC 

Parameter Values Source 

^s 
61 2^/molecule Brodiy.an and Brown (2) 

kd If. 99 X 10"^ sec-^^ Kolthoff and Miller (25) 

''p 756^ Smith (47) 

= 861 Tobolsky and Offenbach (51) 

^tf 6.0 X 10"^k Johnson and Tobolsky (21) 
Mayo et al. (28) 
Saha et al. (4l) 
Tobolsky and Offenbach (51) 

0 0.65^ Gardon (10) 

Pp 1.056 Matheson et al. (27) 

Po 0.869 Patnode and Scheiber (37) 

^Obtained by interpolation of author's data. 

^Adjusted slightly to provide a better fit to our 
experimental data. 

to be a monotonically increasing function of particle size 

with a value greater than 0.8 for particles with diameter 

of 2000 â. If this is taken to be the mean value for all 

particles in the reactor, it is evident that a maximum con­

version of approximately 20 percent can be reached before 

free monomer disappears. Experimentally, however, conver­

sions of approximately ^0 percent were obtained in this 
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investigation before the free monomer vanished. This cor­

responds to an approximate value of 0 = 0.60. The dis­

crepancy may be explained by use of Incorrect values for 

the parameters used in the theoretical equation or by the 

monomer content of particles being rate controlled rather 

than equilibrium controlled. Because of these un­

certainties, a constant value of 0 = 0.65 was used for all 

calculations in this investigation. 

The value of the polymerization rate constant, k^, 

given in the literature is strongly dependent on the type 

of polymerization used in obtaining the data. Typical of 

most solution and bulk polymerization investigations, 

Matheson et al. calculated k^ = 176 1/mole sec at 60 °C 

(27). The value of the polymerization rate constant cal­

culated from emulsion poljTnerization data is usually higher 

than that calculated from bulk or solution polymerization. 

For instance extrapolation of the values of k^ given by 

Smith (4?) to 60 °C yield k = 737 1/mole sec; the value 

obtained by Paoletti and Billmeyer is k^ = 300 1/mole sec 

at 60 (35)' With such widely differing values of k^ 

published in the literature, it was decided that initial 

Monte Carlo runs should be made for the two extreme values. 

Termination rate constants for polystyrene emulsion 

polymerization have not been the subject of much study, 

wince termination has often been considered to be 
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instantaneous. This is equivalent mathematically to as­

suming that is infinite. Gardon was the only investi­

gator found to report for emulsion polymerization (12). 

He determined the ratio k,/k = l4l. Comparable values of 
u P 

this ratio determined from bulk polymerization experimenta­

tion of Tobolsky and Offenbach are 3-4 orders of magnitude 

larger (51)• The values determined from bulk and solution 

polymerization are so large that the Monte Carlo simulation 

results were the same as obtained using an infinite value 

of k^. Therefore, for initial computer runs values of kj. 

based on Gardon's (12) value of k^/k^ and on Tobolsky and 

p 
Offenbach's (51) value of k,/k^ were used. t p 

The following table summarizes the rate constants used 

in the initial Monte Carlo simulations (Table 5)« 

Initial Monte Carlo runs made with a simplified model 

which did not include chain transfer yielded average molecu­

lar weights of 4-6 million, with individual chains having 

molecular weights as high as 40 million. Since no evidence 

of this extreme behavior was found in the literature or 

obtained experimentally in this investigation, we were 

alerted to the possibility of an omission in our model. 

When chain transfer was added, more reasonable molecular 

weight behavior was predicted. 

The computer runs based on Gardon's (12) value of 

k+./k^ showed strong disagreement with experimental data u M 
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Table 5* Summary of rate constants used for initial Monte 
Carlo simulations 

= 6.0 X 10-2 k 

k (1/mole sec) k, (1/mole sec) 
P 

176* 2.67 X 10?'' 

176* 2.48 X 

737^ 4.67 X 

737^ 1.04 X 

^Matheson et al. (27). 

^Based on k^/kn = 861, given by Tobolsky and Offen­
bach (51). 

^Based on k^/k - 1^1, given by Gardon (12). 

^Smith (47). 

for both molecular weight and particle size. For the run 

using kp = 756 1/mole sec, computer output indicated that 

a particle 2000 S in diameter would contain 15-20 free 

radicals. The multiple free radicals were the cause of 

the disagreement vrLth the experimental data= Figure 5 shows 

the viscosity average molecular weight plotted versus cum­

ulative weight fraction. The strong disagreement with the 

experimental data shown in Figure 4 is obvious, both in the 

magnitudes of predicted molecular weights and in the shape 

of the curve. The predicted and experimental particle size 



Figure 5« Predicted molecular weight as a function 
of weight fraction based on Gardon's (12) 
value of k^/kp 

k„ = 176 1/mole sec 
p _ L 

k^ = 2.48 X 10 1/mole sec 

kj.^= 0.01056 1/mole sec 

T =32.9 min 
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data are shown below for comparison. 

On Dy/Dn 

experimental 1410 1 1550 1680 1.192 

predicted 1078 1 1847 1.715 

Again the strong disagreement is obvious. 

The numerical data obtained using very large values of 

showed much better agreement with the trend of the ex­

perimental molecular weight data for both k^ = 176 and 

kp = 737 1/mole sec. Of the two values of predicted 

particle size data using Smith's (*+7) value showed the 

best agreement with experimental particle size data, but 

mild disagreement did exist. By using k^ = 7% 1/mole sec 

the predicted mean particle sizes showed good agreement 

wlvh the experimental data with a residence time of 32A 

minutes 5 but at larger residence times predicted mean 

particle sizes were smaller than the experimental values. 

Since multiple radicals in particles would be more likely 

for small values of , this discrepancy could be caused 

by use of a value of k^ which was too large. It was an­

ticipated that multiple radicals would have the most sig­

nificant effect in the experimental data at the largest 

residence time. Therefore a reasonable approach for de­

ciding on a value of k. would be to use k = 7)6 1/mole sec 
Tj P 

and adjust k^ so that the experimental and predicted particle 
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size data agreed for residence times of h7.2  and 63*'+ min. 

More emphasis would be placed on the data for the largest 

residence time, since in this experiment multiple radical 

effects would be most pronounced. 

Computer runs were made for = 7.? x 10^, 5-0 x 10^, 

and 2.5 X 10^ in addition to the run at = k.32 x 10® for 

the residence time of 6].^ min. For residence times of 

32.4 and ̂ 7.2 minutes, computer runs were made with k^ = 
O 

5.0 X 10° and 4.92 x 10^. The effects of kj. on the molecu­

lar weight as a function of particle size and on the particle 

size distribution can be seen in Figures 6 and 7. In Fig­

ure 6 the results of the analytic expression based on the 

assumption of instantaneous termination is also shown. 

Looking at the general shape of the curves, molecular 

T.TrN-i rfh-h n o "nm i c4 "nrr t'lTn/^Tn r\t' r>oT»f".i n"l o 7:p "Tot c;mp1 1 

particles, but a maximum is reached followed by a decrease 

in molecular weight as particle size increases further. 

The Monte Carlo model shows that very small latex 

particles contain polymer of low molecular weight. These 

particles are so small that even if there is only one 

polymer chain in the particle, the molecular weight of that 

chain is relatively low. The shape of the curve is very 

similar for small ^articles for all values of ko. used in o 

these calculations. However, for large particles the shapes 

of the curves are very noticeably different due to the 



Figure 6. Monte Carlo simulation predictions of 
molecular weight as a function of particle 
size 

T = 63.^ min 
kp = 756 1/mole sec 

= 0.0^5^ 1/mole sec 

a) k^ = k.^2 X 10® 1/mole sec 

b) k. = 7.^ X 10^ 1/mole sec 
1- ^ rf r\ — n n f n _ - . 

l, / j:ï.^ — y « v jl ^^\j x/ m*jxc 5cu 

d) k|. = 2.5 X 10^ 1/mole sec 
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Figure 7. Monte Carlo predictions of particle size 
distribution 

kp = 756 
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presence of multiple radicals in large particles. Mul­

tiple radicals cause the molecular weight of the polymer 

to increase very rapidly with particle size. This is in 

line with the predictions of Stockmayer (49), O'Toole (3^)5 

and Gardon (11) who showed that in the particle size range 

in which the average number of free radicals is signifi­

cantly greater than one-half, the multiple radical effect 

is a very strong function of particle size. 

The effect of multiple radicals on the particle size 

distribution is much less noticeable than on molecular 

weight. Figure 7 shows the predicted particle size dis­

tributions for the various values of . Experimentally 

the curves would probably not be distinguishable, since 

the differences among them are small and are only observed 

in the tails of the distribution?-

The most dramatic effect of the value of is seen 

in the predicted relationship between molecular weight and 

cumulative weight fraction as shown in Figure 8 along with 

the corresponding experimental data. Our Monte Carlo sim­

ulation shows that the shape of the predicted curve is very 

sensitive to values of k.^.. Consequently it is expected 

that the shape of the experimental curve would be very 

sensitive to the presence of multiple free radicals in the 

latex particles. Clearly the experimental data more nearly 

matches the predicted data for large values of ki, bub it is 



Figure 8. Experimental and predicted values of viscosity-
average molecular weight versus weight frac­
tion of polymer 
kp = 756 l/mole sec 

k,n= 0.0^5'+ l/mole sec 

a) T = 63.'+ 
b) T = ^7.2 
C) T = 32.9 
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not obvious which of the predicted curves is most similar 

to the experimental data. In all cases the predicted values 

of molecular weight are higher than the experimental values. 

Such disagreement between experimental and calculated values 

of molecular weight is common for a priori predictions. 

Therefore in trying to match the experimental curves and 

predicted data, more emphasis was placed on matching the 

shape of the predicted curve to the form of the experi­

mental data rather than in minimising the absolute dif­

ferences between the predicted and observed values. 

The method used to compare the trends of the experi­

mental and predicted data was based on an analysis of the 

differences between the experimental and predicted molec­

ular weights. Let d^^ represent the difference between the 

i^^ experimental molecular weight and the corresponding 

predicted molecular weight. If the experimental data 

showed no scatter, a computer predicted curve would exist 

for which all d^ would be equal assuming the model was 

correct. If the predicted curve did not fit the data, the 

values or d^'s would not be the same. This suggests that 

the variance or standard deviation of the d^'s would be 

useful for determining which value of will produce a 

curve most similar in shape to a curve drawn through the 

experimental data. The variance of d is 



8^ 

2 Kd, -cU)2 
= Li" «1' 

where n is the number of experimental data points. The 

standard deviation, s^, is the square root of the variance. 

The computer curve for which the standard deviation of d 

is minimum should be the best fit to the experimental data. 

Table 6 gives a summary of these calculations. Looking 

first at the calculations for the residence time of 63*^ 

min, we can see that the standard deviation of d^ decreases 

as increases with the minimum corresponding to = 
O 

^.92 X 10 1/mole sec. This suggests that the data fc 

this experiment is best described when termination is 

Table 6. Standard deviation of d 
k = 756 1/mole sec 

exp T 4.92 X 10' 

24 32.9 0.0899 

25 63°4 0.1034 

26 47.2 0.0678 

27 47.2 0.1032 

kt 

:+.92xlO^ 7.^x10^ 5.0x10^ 2.5x10 

Û.O899 

0.1084 0.1189 0.2462 

0.0509 

0.1299 

,6 
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taken to be instantaneous. Similar analysis of the data 

of the other experiments is less conclusive, but in none 

of the experiments is there an indication of strong de­

viations from results predicted under conditions of in­

stantaneous termination. 

Table 7 shows the predicted and experimental number, 

area and volume average particle diameters. The ratio of 

volume to number average diameters is also given. This 

ratio may be the most important indication of nonideal 

behavior. For the largest value of this ratio is con­

stant, independent of residence time. For = 5-0 x 10^ 

the ratio shows a steady increase as residence time is 

increased indicating the presence of proportionally more 

large particles. The experimental data for the four ex­

periments show a constant value for the volume average to 

number average diameters. It is also interesting to note 

that the experimental ratios of volume to number average 

diameters are less than those obtained from the computer 

simulation, indicating that a narrower size distribution 

is obtained experimentally than is predicted. The experi­

mental values are closest to agreement for theoretical 

predicts where k^ = 4.92 x 10^ is used. These observations 

suggest that termination in the particles is instantaneous. 
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Table 7. Monte Carlo particle size data 
kp = 756 

= 0.0^5^ 

T =32.9 T =47.2 T=63.4 

I)*=1357 1539 1702 

!+.92 xio® D"b =1525 R°= 1.225 1733 R =1.228 1915 R =1.226 
n 

a 
Eld =1663 1889 2085 

,6 7.5x10" 2011 R =1.273 
1756 
2011 
2238 

/ 1368 1560 177^ 
5.0x10° 1556 R = 1.253 1795 R =1.282 2062 R =1.311 

1715 2001 2324 

1871 
2207 
254-4 

2.5 ][:LC)G :22(D7 lï ==][. 36)1 

—,1 1410 1710 1950 
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lAAn ?n?n 

1650 
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Molecular Weight Predictions 

Of general interest is the success of a model in the 

prediction of latex molecular weight as a function of the 

reaction variables. Figure 9 shows the number and weight 

average molecular weights of the latex as a function of 

residence time, as obtained by use of the Monte Carlo 

simulation. These curves were obtained using kj_ = 4.92 x 
O 

10 l/mole sec and correspond to conditions of instantaneous 

termination. The analytic expressions for molecular weight 

give nearly identical results. For comparison the cor­

responding experimental data are also shown. For very 

small residence times chain transfer is controlling, and 

the curves are nearly horizontal, but as the residence time 

gets large, chain transfer decreases in importance and the 

slope of the moiAciu ̂ r- we ! gr,t c-urve approaches -2/1 as pre­

dicted by Equation k6. The experimental data of this in­

vestigation is also shown on the graph and does not appear 

to be inconsistent with the trends of the predicted curves. 

However predicted values of molecular weight are somewhat 

higher than the experimental values. This discrepancy is 

typical of molecular weight calculations in emulsion 

polymerization. It is commonly attributed to decreased 

free radical efficiency. 

The experimental data of DeGraff Cx) can be quali­

tatively compared with the results calculated by our model, 



Figure 9« Molecular weight as a function of residence 
time as predicted by the Monte Carlo simu­
lation under conditions of instantaneous 
termination 

kp = 756 Vmole sec 

= 4.92 X 10® 1/mole sec 

=0.0^5^ 



MOLECULAR WEIGHT 



90 

but DeGraff's data was collected under different experi­

mental conditions and cannot be compared quantitatively. 

DeGraff concluded from his experimental data that molecu­

lar weight of the latex is independent of particle size. 

However his data show considerable scatter and are not 

inconsistent with our predictions. 

The relationship between number average molecular 

weight and the initiator to surfactant ratio is shown in 

Figure 10 for several residence times. These curves were 

generated using the analytic expression for number average 

molecular weight given in Equation ̂ 6. For very small initiator 

concentrations, chain transfer is the dominant factor in 

determining molecular weight, but as the initiator level is 

increased, the process of radical capture becomes more im-

purlanL and is uhe cuiiLrulliiig fciutur fur large initiator 

concentrations. As before the data of DeGraff (4) can be 

qualitatively compared to our predicted results. DeGraff 

found that molecular weight varies linearly with both sur­

factant concentration and initiator concentration when 

plotted on logarithmic coordinates. However, when his 

molecular weight data is expressed in terms of the initiator 

to surfactant ratio, the trend of his data is consistent 

vri-th our predictions. 



Figure 10. Number average molecular weight as a func­
tion of the initiator-surfactant ratio as 
predicted by the analytic molecular weight 
model 
kp = 756 1/mole sec 

= h.^2 X 10^ 1/mole sec 

k,m = 0.0'+5^ 1/mole sec 
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DISCUSSION 

Consideration of all the data presented in the pre­

vious section leads on to the conclusion that noninstan-

taneous termination has had minimal, if any, effect on the 

product produced in this investigation. Experimental 

molecular weight data from this investigation is not in­

consistent with predictions based on instantaneous termi­

nation. Analysis of the particle size data provides ad­

ditional evidence that termination is instantaneous. If 

all experimental evidence is considered, it can be con­

cluded that termination in the particles is extremely rapid 

under conditions of this investigation and that for cal-

culational purposes termination can be considered to be 

instantaneous without introduction of noticeable error. 

A comparison of the Da"ccn and continuous experimenual 

results shows that the molecular weight-particle size re­

lationship is different for the two eases. In the batch 

experiments large particles were found to have the highest 

molecular weight while in the continuous experiments large 

particles had the lowest molecular weight, A reason hy­

pothesized for partial explanation of the batch results 

was that the stochastic variation responsible for producing 

larger than average particles also is responsible for pro­

ducing larger than average molecular weights. In a 
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continuous system, however, dependency of the rates of radi­

cal capture and chain termination on particle size is the • 

cause of molecular weight being a function of particle size. 

Use of the Monte Carlo simulation has shown that the 

assumption that a particle grows one-half of the time can­

not be validly used for very small particles. With our 

model the average particle was observed to grow from 50 & 

to approximately 500 2 before the second free radical was 

captured. Obviously the free radical population of parti­

cles in this range is much closer to one than to one-half. 

Despite the apparent success of the Monte Carlo simu­

lation for describing the growth of an individual polymer 

particle, predictions of conversion are grossly in error. 

Two possible sources of the error are use of an incorrect 

TToTmo r\ +' (A n c ri+~* P t* r\ r» o o or»r ThO T.nT.jal 9 n A pr»pp 

of the latex. Table 8 summarizes the experimentally cal­

culated values for 0 and the total surface area of the 

particles. Both appear to vary vrith residence time. The 

volume fraction of monomer is largest for small residence 

times, a result contrary to the predictions of Morton et 

al. (31). For all experiments the total surface area of 

the particles is lower than the surface area based on sur­

factant concentration, S, but the experimentally determined 

value of particle surface increased with residence time. 

The observed changes of experimental particle surface area 
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Table 8. Experimentally determined values of volume frac­
tion of monomer and particle surface area 

exp 2h 25 26 27 

T 32.9 63.4 47.2 47.2 

conv 16.5# 40.2# 25.0# 28.4# 

0 0.79 0.60 0.73 0.72 

Total surface 
area of ^ ^ ^ ^ 
particles 0.59 x 10^ 1.03 x 10^ 0.74 x 10^ 0.89 x 10? 

S = a^ W^[S] = 2,27 x 10^ cm^/ml latex 

may explain the change of 0 with residence time. The in­

creased particle areas at larger residence times should 

result in lower interracial surfactant concentration. This 

lower surfactant concentration, according to Morton's (30) 

theory, will in turn establish a lower equilibrium volume 

fraction of monomer in a latex particle. This is consistent 

with the observed experimental change of 0 with residence 

time. It should be noted at this time that S is also used 

in the calculation of molecular weight the results of which 

have been found in this investigation and in the literature 

consistently larger than those observed experimentally. 
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CONCLUSIONS 

1. Experimental data from this investigation indicate 

that molecular weight is a modest function of particle 

size in a polystyrene latex produced in a continuous 

stirred tank reactor. The experimental data indicate 

that the smallest molecular weight is found in the 

largest particles. 

2. Limited experimental data obtained for batch emulsion 

polymerization of polystyrene suggest that molecular 

weight is a modest function of particle size for a com­

pletely reacted latex. One of two experiments indi­

cates that higher molecular weights are found in the 

largest particles, while a second experiment is in­

conclusive, 

3 /:% H m -n I r\t' T\r\ I irmo "n 4 '7 oi* "i mn 

in a continuous stirred tank reactor is useful for 

prediction of the molecular weight and particle size 

characteristics of the latex, 

4. Comparison of the experimental data and predictions 

of the Monte Carlo simulation show no evidence of the 

presence of multiple free radicals in latex particles. 

5. Approximate analytic expressions for number average 

and weight average molecular weights were derived 

based on the assumption of instantaneous termination. 

Calculations based on these expressions are nearly 
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identical to predictions of the Monte Carlo simula­

tion. 

6. Chain transfer was a significant factor in accurate 

predictions of the molecular weight of polystyrene 

produced by emulsion polymerization. 

7. The assumption that the total surface area of parti­

cles in a latex as determined by the surfactant con­

centration in a latex was found to be in error in 

this investigation. 
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RECOMMENDATIONS 

1. A latex fractionation technique should be developed 

which would fractionate a latex according to particle 

size in such a way that a series of latex samples 

nearly homogeneous in particle diameter is obtained. 

2. The relationship between molecular weight and particle 

size should be studied for a monomer other than styrene, 

in which the effects of multiple radicals in particles 

would be more likely to be found. Methyl methacrylate 

and vinyl acetate are possibilities. 

3. The monomer content of particles should be investigated 

to determine if 

a) monomer content is affected by the amount of sur­

factant present 

u) monomer content is a function cf particle size 

c) monomer content of particles is an equilibrium 

or rate controlled quantity. 

4. The commonly made assumption that the total surface 

area of the latex is limited by surfactant concentra­

tion should be examined. This may be combined with a 

study of nucleation phenomenon in a continuous stirred 

tank reactor operating under transient conditions. 

Additional kinetic studies are needed to determine why 

the polymerization rate constant determined by emulsion 
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polymerization differs so greatly from values of the 

same constant determined for bulk or solution polymer­

ization. Kinetic studies of particle growth in batch 

monodisperse latexes may be useful. 

6. A "batch latex produced with excess of free monomer 

should be separated into fractions according to 

particle size. Comparison of the results of such an 

experiment with the batch results obtained in this 

investigation may yield information about polymeriza­

tion in monomer starved particles. 
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APPENDIX 

Computer program for Monte Carlo simulation of 

emulsion polymerization of styrene in 

a continuous stirred tank reactor 
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