
Chapter 2
Brain Sensors and Signals

2.1 Relevant Sensors

A variety of sensors for monitoring brain activity exist, and could in principle pro-
vide the basis for a BCI. These include, besides electroencephalography (EEG) and
more invasive electrophysiological methods such as electrocorticography (ECoG)
and recordings from individual neurons within the brain, magnetoencephalography
(MEG), positron emission tomography (PET), functional magnetic resonance imag-
ing (fMRI), and optical imaging (i.e., functional Near InfraRed (fNIR)). However,
MEG, PET, fMRI, and fNIR are still technically demanding and expensive, which
impedes widespread use. Despite these impediments, several studies have recently
explored the value of these modalities for BCI research [10, 11, 42, 60, 82, 97, 98,
108–110, 118]. Furthermore, PET, fMRI, and fNIR, which depend on metabolic
processes, have long time constants and thus seem to be less amenable to rapid
communication. At present, non-invasive and invasive electrophysiological meth-
ods (i.e., EEG, ECoG, and single-neuron recordings, see illustration in Fig. 2.1) are
the only methods that use relatively simple and inexpensive equipment and have
high temporal resolution. Thus, these three alternatives are at present the only meth-
ods that can offer the possibility of a new non-muscular communication and control
channel – a practical brain–computer interface.

The first and least invasive alternative uses EEG, which is recorded from the scalp
[6, 22, 39, 40, 54, 59, 61, 64, 73, 76, 101, 106, 114, 116, 117]. These BCIs sup-
port much higher performance than previously assumed, including two- and three-
dimensional cursor movement [59, 66, 114]. However, the acquisition of such high
levels of control typically requires extensive user training. Furthermore, EEG has
low spatial resolution, which will eventually limit the amount of information that
can be extracted, and it is also susceptible to artifacts from other sources.

The second alternative uses ECoG, which is recorded from the cortical surface
[23, 46, 47, 111]. It has higher spatial resolution than EEG (i.e., tenths of millimeters
vs. centimeters [25]), broader bandwidth (i.e., 0–500 Hz [99] vs. 0–50 Hz), higher
characteristic amplitude (i.e., 50–100 µV vs. 10–20 µV), and far less vulnerability
to artifacts such as EMG [3, 25] or ambient noise. While this method is invasive,
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Fig. 2.1 Different types of
sensors most commonly used
in BCI research. A:
Electrodes are placed
non-invasively on the scalp
(electroencephalography
(EEG)). B: Electrodes are
placed on the surface of the
brain (electrocorticography
(ECoG)). C: Electrodes are
placed invasively within the
brain (single-neuron
recordings). (From [112])

the use of these electrodes that do not penetrate the cortex may combine excellent
signal fidelity with good long-term stability [7, 49, 52, 119].

The third and most invasive alternative uses microelectrodes to measure local
activity (i.e., action or field potentials) from multiple neurons within the brain [21,
32, 45, 67, 84, 92, 95, 103]. Signals recorded within cortex have higher fidelity and
might support BCI systems that require less training than EEG-based systems. How-
ever, clinical implementations of intracortical BCIs are currently impeded mainly
by the difficulties in maintaining stable long-term recordings [20, 93, 100], by the
substantial technical requirements of single-neuron recordings, and by the need for
continued intensive expert oversight. For these reasons, practically all BCI demon-
strations in humans to date have been achieved with, and the examples in this book
are using or meant for, EEG or ECoG recordings.

2.2 Brain Signals and Features

2.2.1 Using Brain Signals for Communication

Successful creation of a new communication channel – directly from the brain to an
output device – depends on two requirements. The first requirement is the use of an
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adequate sensor that can effectively measure the brain signal features that can com-
municate a user’s intent. As described in the previous section, multiple sensors exist
that can in principle detect relevant signals. Practicality and speed considerations
exclude most of these options, so that almost all BCI systems to date depend on de-
tection of electrophysiological signals using sensors on the scalp, on the surface of
the brain, or within the brain. In humans, safety and/or stability issues have confined
most studies to electroencephalographic (EEG) recordings from the scalp. The sec-
ond requirement is the definition and negotiation of a mutual language (i.e., brain
signal features such as time-domain or frequency-domain measurements at particu-
lar locations), so that, as in any other communication system, the user may use the
symbols of this language to communicate intent, and the computer can detect these
symbols and effect this intent.

For two reasons, the language of BCI communication cannot be completely ar-
bitrary. First, the brain might simply not be physically able to produce the symbols
of this language. For example, one might define the arbitrary language as the am-
plitude coherence between two different frequency bands at one particular location,
and its symbols could be discrete coherence amplitudes, but the brain might simply
not be physically able to produce changes in coherence amplitude at the selected
frequencies and locations. Second, the brain might be able to produce the symbols
of this language, but might not be able to use them to convey intent. For example,
one might define the arbitrary language as amplitude modulations at 10 Hz over
visual areas of the brain. Many studies have shown that repetitive visual stimuli at
particular frequencies (such as 10 Hz) can evoke oscillatory responses in the brain
[63], so clearly the brain is physically able to modulate activity at 10 Hz and can
thus produce different symbols of that arbitrary language. However, it might not be
able to produce these symbols without the visual stimuli, or might not be able to use
these symbols to convey intent.

In summary, there is no theoretical basis for selecting the language (i.e., brain
signal) that is most useful for BCI communication. Furthermore, any clinically suc-
cessful BCI will necessarily be under the influence of practical considerations such
as risk, benefit, and price. Thus, it is currently unclear which brain signal and which
sensor modality (EEG, ECoG, or single neuron recordings) will ultimately be most
beneficial given these constraints. At the same time, experimental evidence is able
to provide some guidance on which brain signals to utilize for BCI communication.
For example, many studies have shown that particular imagined tasks (e.g., hand
movements) have detectable effects on particular brain signals. Taking advantage
of this phenomenon, people can communicate simple messages using imagery of
hand movements. Other studies have shown that the presentation of desired stim-
uli produces detectable brain signal responses. By presenting multiple stimuli and
by detecting the response to the desired stimulus, people can communicate which
item they desire. These two possibilities are representative for the phenomena most
relevant for BCI communication in humans, and are described in more detail in the
following two sections.
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Fig. 2.2 The brain figure on the top shows a vertical cross-section along motor (left) and sensory
(right) cortical areas. The motor cortex is displayed in red. Particular areas in the motor cortex are
associated with function of particular limbs (i.e., “motor homunculus”). Similarly, sensory cortex
is shown in blue. Particular areas in sensory cortex are also associated with sensory function of
different limbs (i.e., “sensory homunculus”)

2.2.2 Mu/Beta Oscillations and Gamma Activity

Most people exhibit prominent oscillations in the 8–12 Hz band of the EEG recorded
over sensorimotor areas (see Fig. 2.2) when they are not actively engaged in motor
action, sensory processing, or in imaginations of such actions or processing [24, 27,
37] (reviewed in [69]). This oscillation is usually called mu rhythm and is thought
to be produced by thalamocortical circuits [69]. The lack of modern acquisition
and processing methodologies have initially not made it possible to detect the mu
rhythm in many people [8], but computer-based analyses have since revealed that
the mu rhythm is in fact present in a large majority of people [70, 71]. Such analyses
have also demonstrated that the mu rhythm is usually associated with 18–25 Hz beta
rhythms. While some of these beta rhythms are harmonics of mu rhythms, some are
separable by topography and/or timing from mu rhythms, and thus at least appear to
be independent EEG features [57, 70, 71].

Because mu/beta rhythm changes are associated with normal motor/sensory
function, they could be good signal features for BCI-based communication. Move-
ment or preparation for movement, but typically not specific aspects of movements
such as its direction [104], are typically accompanied by a decrease in mu and beta
activity over sensorimotor cortex, particularly contralateral to the movement. Fur-
thermore, mu/beta rhythm changes also occur with motor imagery (i.e., imagined
movement) [57, 72]. Because people can change these rhythms without engaging
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Fig. 2.3 Examples of mu/beta rhythm signals (modified from [85]). A, B: Topographical distribu-
tion on the scalp of the difference (measured as r2 (the proportion of the single-trial variance that
is due to the task)), calculated for actual (A) and imagined (B) right-hand movements and rest for
a 3-Hz band centered at 12 Hz. C: Example voltage spectra for a different subject and a location
over left sensorimotor cortex (i.e., C3 (see [94])) for comparing rest (dashed line) and imagery
(solid line). D: Corresponding r2 spectrum for rest vs. imagery. Signal modulation is focused over
sensorimotor cortex and in the mu- and beta-rhythm frequency bands

in actual movements, these rhythms could serve as the basis for a BCI. Figure 2.3
shows the basic phenomenon of mu/beta-rhythm modulations in the EEG.

Similar to EEG, activity in the mu/beta bands recorded using ECoG also de-
creases with motor tasks [12, 14, 28, 48, 62, 77, 96]. In addition, activity in the
gamma range (i.e., >40 Hz) has been found to increase with these tasks [13, 47,
48, 62]. With isolated exceptions (e.g., [74]), task-related changes in these higher
frequencies have not been reported in the EEG. There are indications that gamma
activity reflects activity of local neuronal groups [41, 62], and thus could be most di-
rectly reflective of specific details of movement. Indeed, recent studies have shown
relationships of gamma activity with specific kinematic parameters of hand move-
ments [9, 79, 83, 86].

In summary, many studies have shown using EEG [36, 54, 61, 64, 73, 113–116]
or ECoG [23, 46, 47, 87, 111] that humans can use motor imagery to modulate
activity in the mu, beta, or gamma bands, and to thereby control a BCI system.
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Fig. 2.4 Example characteristics of the P300 response (data courtesy of Dr. Eric Sellers,
Wadsworth Center/East Tennessee State University). Left: Topographical distribution of the P300
potential at 500 ms after stimuli, measured as r2 and calculated between desired and not desired
stimuli. Center: The time courses at electrode location Pz of the voltages for desired (solid line) or
not desired (dashed line) stimuli. Right: Corresponding r2 time course

2.2.3 The P300 Evoked Potential

In addition to brain responses modulated by motor action or motor imagery, evoked
potentials may also be useful for BCI operation. For example, numerous studies over
the past four decades have shown that presentation of infrequent stimuli typically
evokes a positive response (called the “P300” or “oddball” potential) in the EEG
over parietal cortex about 300 ms after stimulus presentation (see [17, 102, 107];
[15, 18, 80] for review; Fig. 2.4). The amplitude of the P300 potential is largest at
the parietal electrode sites and is attenuated as the recording sites move to central
and frontal locations [15]. A P300 is usually elicited if four conditions are met. First,
a random sequence of stimulus events must be presented. Second, a classification
rule that separates the series of events into two categories must be applied. Third,
the user’s task must require using the rule. Fourth, one category of events must be
presented infrequently [16].

Using experimental paradigms that implement these four conditions, the P300
potential has been used as the basis for a BCI system in many studies [1, 5, 19, 22,
33, 68, 78, 88–91, 106]. The classical format developed by Donchin and colleagues
[22] presents the user with a matrix of characters (Fig. 2.5). The rows and columns
in this matrix flash successively and randomly at a rapid rate (e.g., eight flashes
per second). The user selects a character by focusing attention on it and counting

Fig. 2.5 The classical
P300-based spelling
paradigm developed by
Donchin [19, 22]. Rows and
columns of the matrix flash in
a block-randomized fashion.
The row or column that
contains the desired character
evokes a P300 potential
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how many times it flashes. The row or column that contains this character evokes
a P300 response, whereas all others do not. After averaging several responses, the
computer can determine the desired row and column (i.e., the row/column with the
highest P300 amplitude), and thus the desired character.

2.3 Recording EEG

2.3.1 Introduction

After discussing the brain signals most commonly used for BCI operation, this sec-
tion describes the relevant principles of brain signal recordings and the types of sig-
nal artifacts that are typically encountered. These descriptions are mostly focused
on EEG. The same general recording principles also apply to ECoG recordings.
While most types of artifacts are typically encountered only with EEG, artifacts can
also be detected in ECoG [3]. Brain signals are detected using different types of
metal electrodes that are placed on the scalp (EEG) or on the surface of the brain
(ECoG). These electrodes measure small electrical potentials that reflect the activity
of neurons within the brain. To detect the tiny amplitude of these signals, they first
have to be amplified. Any biosignal amplifier measures the potential difference (i.e.,
the voltage) between two electrodes. In most BCI systems, the second of these two
electrodes is always the same, i.e., measurements are “unipolar” rather than “bipo-
lar.” In other words, measurements from all electrodes are referred to one common
electrode, which consequently is called “reference,” and typically labeled Ref. To
improve signal quality, amplifiers require the connection of a “ground” electrode,
which is typically labeled Gnd.

EEG electrodes are small metal plates that are attached to the scalp using a con-
ducting electrode gel. They can be made from various materials. Most frequently,
tin electrodes are used, but there are gold, platinum, and silver/silver-chloride
(Ag/AgCl) electrodes as well. Tin electrodes are relatively inexpensive and work
well for the typical BCI-related application. At the same time, tin electrodes intro-
duce low-frequency drifting noise below 1 Hz, which makes them unsuitable for
some applications (e.g., Slow Cortical Potential measurements or low-noise evoked
potential recordings).

An important but often neglected detail: mixing electrodes made from different
materials in the same recording will result in DC voltage offsets between electrodes.
These offsets are due to electrochemical contact potentials and can often be larger
in amplitude than what a typical amplifier can tolerate. This will result in a greatly
diminished signal-to-noise ratio. Thus, you should always use electrodes made from
the same material in a particular recording.

2.3.2 Electrode Naming and Positioning

The standard naming and positioning scheme for EEG applications is called the
10–20 international system [35]. It is based on an iterative subdivision of arcs on
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the scalp starting from particular reference points on the skull: Nasion (Ns), Inion
(In), and Left and Right Pre-Auricular points (PAL and PAR, respectively). The in-
tersection of the longitudinal (Ns–In) and lateral (PAL–PAR) diagonals is named
the Vertex, see Fig. 2.6-A. The 10–20 system originally included only 19 electrodes
(Fig. 2.6-B, [35]). This standard was subsequently extended to more than 70 elec-
trodes (Fig. 2.6-C, [94]). This extension also renamed electrodes T3, T5, T4, and
T6, into T7, P7, T8, and P8, respectively. Sometimes, one of the electrodes mounted
in these positions is used as reference electrode. More often, the ear lobe or mastoid
(i.e., bony outgrowth behind the ear) are used. For example, a typical recording may
have the ground electrode placed on the mastoid and the reference on the ear lobe
on the opposite side.

Acquiring EEG from more than a single location is necessary to be able to de-
termine the optimum location for the BCI purpose. It also greatly facilitates the
identification of signal artifacts. Thus, for research purposes we strongly recom-
mend to record from as many locations as possible – at least from 16. For clinical
applications, we suggest to initially record from at least 16 locations. Once effective
BCI operation has been established and the optimal locations have been determined,
the electrode montage can be optimized to record from fewer locations.

2.3.3 Important Brain Areas and Landmarks for BCIs

The brain consists of several distinct areas and landmarks. The approximate location
of these areas and landmarks can be determined from the extended 10–20 system
shown in Fig. 2.6-C. One of these landmarks is the central sulcus, which is also
called Rolandic fissure. The central sulcus runs approximately along the lines be-
tween electrodes CPz–C2–C4 and CPz–C1–C3, respectively. On each hemisphere,
the central sulcus divides the brain into the frontal lobe (in frontal direction, i.e.,
toward the nose) and parietal lobe (in posterior direction, i.e., toward the back of
the head). The frontal lobe contains, among other areas, the primary motor cor-
tex, i.e., the area of the brain that is most immediately involved in the execution of
movements. The parietal lobe contains, among other areas, primary sensory cortex,
i.e., the area of the brain that is a direct neighbor of the primary motor cortex and
that is most directly involved in processing sensory information from different body
parts. Another important landmark is the Sylvian fissure, which is also called lateral
sulcus. It runs along the lines connecting CP6–C6–FT8–FT10 and CP5–C5–FT7–
FT9, respectively. It separates the temporal lobe, an area in the brain responsible for
auditory processing and memory, from the frontal and parietal lobes.

2.3.4 Placing Electrodes with a Cap

Accurate placement of many electrodes on the scalp is time consuming and requires
practice. EEG caps greatly facilitate this process. These caps are made of elastic
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Fig. 2.6 Electrodes on the original 10–20 scheme (figures A and B, re-drawn from [35]). Current
extensions to this scheme define more than 70 locations (figure C, re-drawn from [94])

fabric (often available in different sizes), and electrodes are already fixed in the
proper configuration. One proven technique to place electrodes using such caps is
the following:

• Mark the vertex on the subject’s scalp using a felt-tip pen or some other similar
method. Begin by locating the nasion and inion on the subject as indicated in
panel A of Fig. 2.6. Using a tape measure, find the distance between these two
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locations. The point half-way between the two points is the vertex. Make a mark
at that point for later reference. (Other 10–20 points could be located in a similar
manner.)

• Mark scalp positions for Fpz and Oz. The Fpz position is above the nasion 10%
of the distance from the nasion to the inion. The Oz position is above the inion
the same distance.

• Identify the Cz electrode on the EEG cap and place the cap to position the Cz
electrode on the vertex.

• Keeping Cz fixed, slide the cap onto the head.
• While ensuring that Cz does not shift, adjust the cap such that the Fz–Cz–Pz line

is on the midline; Fp1–Fp2 line is horizontal, and at the level of the Fpz mark; the
O1–O2 line is horizontal, and at the level of the Oz mark.

• You can now fix Ref and Gnd electrodes. These electrodes are attached in one
of a few typical configurations. One common configuration is to attach the Ref
electrode to one earlobe, and the Gnd electrode to the mastoid on the same side
of the head. Another possible configuration is to attach Ref to one mastoid and
Gnd to the other mastoid. This choice is influenced by the used cap technology,
which may have separate electrodes outside the cap for reference and ground, or
may have these electrodes embedded in the cap directly.

2.3.5 Removing Artifacts and Noise Sources

2.3.5.1 Introduction

Electrical power lines use sinusoidal voltages with a frequency of 50 or 60 Hz,
depending on your country. Generally, 50 Hz are used in Europe, Asia, Africa, and
parts of South America; 60 Hz are used in North America, and parts of South Amer-
ica. Voltages are typically 110 or 230 volts, and thus exceed the EEG’s 50 to 100
microvolts by a factor of 2 × 106, or 126 dB. Therefore, mains interference is ubiq-
uitous in EEG recordings, especially if taken outside specially equipped, shielded
rooms. Most EEG amplifiers provide a so-called notch filter that suppresses signals
in a narrow band around the power line frequency.

Amplifier notch filters are designed to suppress a certain amount of mains in-
terference. When there is mains interference still visible in the signal after acti-
vating the amplifier’s notch filter, this is often due to high electrode impedance
(Fig. 2.7).

2.3.5.2 Artifacts due to Eye Blinks

Eye blink artifacts are generated by fast movements of the eyelid along the cornea,
such as during an eye blink. By friction between lid and cornea, this movement
results in charge separation, with a dominantly dipolar charge distribution, and the
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Fig. 2.7 Artifacts due to power line interference. This figure shows an example for one signal
channel (marked by the arrow) that is contaminated by regular high frequency (i.e., 60 Hz) noise

dipole moment pointing in up-down-direction. In the EEG, this effect is recorded
as a positive peak that lasts a few tenths of a second, is most prominent in the
frontopolar region, but propagates to all the electrodes of the montage, attenuating
with distance from the front (Fig. 2.8).

The frequency content of eye blink artifacts is negligible in the alpha band
(around 10 Hz), so they have no strong effect on the use of sensorimotor rhythms.
At the same time, their time-domain amplitude is quite large so that analyses in the

Fig. 2.8 Eye blink artifacts. This figure shows examples for signal contamination by eye blink
artifacts. These artifacts are most prominent in frontal channels (channels Fp1 and Fp2), but have
effects on all channels
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Fig. 2.9 Eye movement artifacts. Eye movements have a prominent effect on many channels. See
the positive or negative deflections during early, middle and late parts of this recording

time domain (such as averaged P300 wave forms) can be strongly influenced by
their presence.

2.3.5.3 Artifacts due to Eye Movements

Ocular artifacts (electrooculographic (EOG) signals) are produced by eye move-
ments, and generated by a frictive mechanism that is similar to the one described
above for eye blinks, except that it involves the retina and cornea rather than cornea
alone. The effect on frontopolar and frontotemporal electrodes can be symmetric
or asymmetric, depending whether the movement is vertical or horizontal, respec-
tively. The effect of eye movement artifacts on frequency- or time-domain analysis
is quite similar to that of blink artifacts, except that their frequency content is even
lower, and amplitudes tend to be larger (Fig. 2.9).

2.3.5.4 Artifacts due to Muscle Movements

Muscular artifacts (electromyographic (EMG) signals, Fig. 2.10) must be carefully
checked at the beginning of each recording, and verified throughout the recording.
This is because the frequency distribution of EMG signals is very broad, so that
they have a profound effect on amplitudes in typical mu/beta frequency ranges. The
most common sources of EMG are the muscles that lift the eye brows, and those
that close the jaw. Both groups of muscles can be inadvertently contracted during
an experimental session. Keeping the mouth slightly open (or the tip of the tongue
between the foreteeth) is a good strategy to avoid jaw-generated EMG.
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Fig. 2.10 Muscle movement artifacts. Many channels exhibit high frequency noise; in contrast to
the power line interference, this noise is highly variable over time

2.4 BCI Signal Processing

The previous section described the two frequency- and time-domain phenomena
most relevant to human BCI research, i.e., mu/beta rhythms and gamma activity,
and the P300 evoked potential, respectively. Many studies have shown how these
phenomena can be extracted and translated into device commands using differ-
ent methods. All currently used procedures are listed in recent review articles on
BCI feature extraction and translation methods [4, 50, 58]. The following sec-
tions describe an analysis approach that can realize many of these techniques.
This approach is implemented in the example configurations of the BCI2000 soft-
ware.

2.4.1 Introduction

BCI signal processing is a difficult problem. In addition to typical problems faced by
any communication system (e.g., signals are contaminated with noise during trans-
mission), it is initially and even during subsequent operation not clear which brain
signals actually carry the message the user wants to communicate. In other words,
it is the task of BCI signal processing to decode a message in a language we do not
know much about. Fortunately, experimental evidence can provide some basic guid-
ance. This guidance comes from observations that particular tasks (such as imagined
hand movements) have particular effects on specific brain signals (such as the mu
rhythm measured at a particular location). Even with this information, the choice of
signals and tasks is still difficult, because it is likely that it is suboptimal (so that
a completely different signal and task might provide improved performance) and
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Fig. 2.11 Signal processing model utilized in BCI2000. This model consists of feature extraction
and translation and can describe all common BCI methods

because it has to be optimized for each individual. In other words, even when only
considering one possible physiological signal (such as the mu rhythm), the imagery
task, best frequencies, and best locations have to be selected for each individual.
The difficulty of choosing signals and tasks could be regarded as the signal iden-
tification problem of BCI communication. Assuming that a good candidate signal
(e.g., the signal amplitude at a particular frequency or location) has been identified,
traditional BCI signal processing usually employs two components to translate these
signals into device commands: feature extraction and the translation algorithm.1

Feature extraction consists of two procedures: spatial filtering and temporal fil-
tering (Fig. 2.11). Each of these procedures may have different realizations. The
following paragraphs describe those realizations that are relevant to sensorimotor
rhythm and P300 processing.

2.4.2 Spatial Filtering

The initial step in feature extraction is the application of a spatial filter that may
have many possible realizations. The purpose of the spatial filter is to reduce the ef-
fect of spatial blurring. Spatial blurring occurs as an effect of the distance between
the sensor and the signal sources in the brain, and because of the inhomogeneities
of the tissues in between. Different approaches to spatial filtering have attempted

1We use the term translation algorithm instead of classification throughout this book, because the
typically continuous nature of the device control signals produced by BCI signal processing is
better expressed by the term translation algorithm rather than the discrete output that is typically
implied by the term classification.
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to reduce this blurring, and thus to increase signal fidelity. The most sophisticated
approaches attempt to deblur signals using a realistic biophysical head model that
is optimized for each user and whose parameters are derived from various sources
such as magnetic resonance imaging (MRI) (e.g., [44]). While these approaches do
increase signal quality in carefully controlled experiments, they are currently im-
practical for most experiments and for clinical applications. Other approaches do
not require external parameterization of a complex model, but rather are simply
driven by the signals that are submitted to it. For example, Independent Component
Analysis (ICA) has been used to decompose brain signals into statistically inde-
pendent components [51], which can be used to get a more effective signal repre-
sentation. (This approach is called blind deconvolution in microscopy applications
(e.g., [105]).) Even though these approaches have less demanding requirements than
the more comprehensive modeling approaches, they require non-trivial calibration
using sufficient amounts of data, and they produce output signals that will not nec-
essarily correspond to actual physiological sources in the brain. Furthermore, while
ICA optimizes statistical independence of brain signals, and can thus lead to more
compact signal representations, it does not guarantee to optimize the discriminabil-
ity of different brain signals in different tasks. Consequently, these complex model-
based and data-driven approaches may not be amenable or desirable for typical BCI
experimentation. A more appropriate technique is Common Spatial Patterns (CSP)
[29, 81]. This technique creates a spatial filter (i.e., weights for the signals acquired
at different locations) that correspond to their importance in discriminating between
different signal classes. Finally, even simpler deblurring filters have been shown to
be effective and yet practical [56]. These filters are essentially spatial high-pass fil-
ters with fixed filtering characteristics. Typical realizations include Laplacian spatial
filters and the Common Average Reference (CAR) filter.

A Laplacian spatial filter is comprised of discretized approximations of the sec-
ond spatial derivative of the two-dimensional Gaussian distribution on the scalp
surface, and attempts to invert the process that blurred the brain signals detected
on the scalp [31]. The approximations are further simplified such that, at each time
point t , the weighted sum of the potential si of the four nearest or next nearest elec-
trodes is subtracted from the potential sh at a center electrode for the small and large
Laplacian, respectively (see Eq. 2.1, Fig. 2.12(a), and Fig. 2.12(b)).

s′
h(t) = sh(t) −

∑

i∈Si

wh,isi(t) (2.1)

In this equation, the weight wh,i is a function of the distance dh,i between the
electrode of interest h and its neighbor i:

wh,i =
1

dh,i∑
i∈Si

1
dh,i

(2.2)

In practice, this filter is often implemented simply by subtracting the average of the
four next nearest neighbors (i.e., the weight for each neighbor is −0.25) from the
center location.
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Fig. 2.12 Locations (filled circles) involved in different spatial filters applied to location C3 (see
Fig. 2.13) (open circles)

Fig. 2.13 Electrode designations for a 64-channel setup of the extended 10–20 system. (Redrawn
from [94])

The Common Average Reference (CAR) filter, another possible spatial high-pass
filter, is implemented by re-referencing the potential sh(t) of each electrode h at
each time point t to an estimated reference that is calculated by averaging the signals
from all H recorded electrodes (see Eq. 2.3 and Fig. 2.12(c)). In other words, a CAR
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Fig. 2.14 Example of application of a Common Average Reference (CAR) spatial filter. Signals
are spatially more specific and better highlight beta rhythm suppression during the period indicated
by the green bar when a CAR filter is applied (B and D) compared to when it is not (A and C)

filter calculates the signal amplitude that is common to all electrodes ( 1
H

∑H
i=1 si(t))

and subtracts it from the signal sh(t) at each location. The CAR and Large Laplacian
filters have been shown to provide comparable performance [56].

s′
h(t) = sh(t) − 1

H

H∑

i=1

si(t) (2.3)

Whatever the realization of the spatial filter, its main purposes are to deblur the
recorded signals so as to derive a more faithful representation of the sources within
the brain, and/or to remove the influence of the reference electrode from the signal.
The example in Fig. 2.14 illustrates results of this operation on signals recorded
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using EEG. In this example, the topographies illustrate the effect of a CAR filter on
signals in space: in A, the unfiltered signal is spatially broad, whereas in B, the CAR-
filtered signal emphasizes spatially local features. (Color indicates the correlation
coefficient r calculated between the signal time course at each location (indicated
by small dots) and the signal at the location indicated with the white star.) The
signal time courses in C and D (which are recorded at the location marked with
a star) illustrate the effect of a CAR filter on beta rhythms that are suppressed by
right hand movement. The green bar indicates the period that the subject opened
and closed her right hand. Beta rhythm oscillations (around 25 Hz) are suppressed
during this period. This effect is more pronounced for the CAR-filtered signal in D
compared to the unfiltered data in C. Also, application of the CAR filter removes
the slow signal fluctuations seen in C. Thus, this example illustrates that the CAR
filter removes some of the signal variance that is not related to the hand movement
task.

The second and final step of feature extraction is the application of a temporal
filter. Its purpose is to project the input signal in a representation (i.e., domain) in
which the brain signals that can be modulated by the user are best expressed. The
P300 potential is usually extracted in the time domain simply by averaging the brain
responses to the different stimuli. Because mu/beta rhythms represent oscillatory
activity, they are usually extracted in the frequency domain as described below.

2.4.3 Feature Extraction: Sensorimotor Rhythms

As described, imagined movements have been shown to produce changes in the
mu (i.e., 8–12 Hz) or beta (i.e., 18–25 Hz) frequency band. Thus, for the process-
ing of mu/beta rhythm (i.e., sensorimotor) signals, the frequency domain is most
often used, although a recent paper suggested a matched filter in the time domain
[38] that better captured the non-sinusoidal components of the mu rhythm. Several
methods for the transformation of time domain into the frequency domain have been
proposed, such as the Fast Fourier Transform (FFT), wavelet transform, and proce-
dures based on autoregressive parameters. The requirements of BCI systems offer
suggestions about which of these methods to select. BCIs are closed-loop systems
that should provide feedback many times per second (e.g., typically, at more than
20 Hz) with a minimal group delay. In general, no method can concurrently achieve
high resolution in time and frequency. However, the Maximum Entropy Method
(MEM) [53], which is based on autoregressive modeling, has a higher temporal res-
olution (and thus reduced group delay) at a given frequency resolution compared
to the FFT and wavelet transforms [53], and is thus advantageous in the context of
BCI systems. Whatever its realization, the temporal filter used for mu/beta rhythms
transforms time-domain signals s′

e(t) into frequency-domain features ae(n).
As an example of its function, Fig. 2.15 illustrates application of the temporal

filter to data collected using scalp-recorded EEG while a subject imagined hand
movement or rested. CAR-filtered signals at each location were converted into the
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Fig. 2.15 Example analyses of the temporal filter. In this example, EEG was recorded during
imagined left hand movement and during rest. The spectrum for rest (blue solid line) is different
from that for imagined hand movement (red dashed line). This difference is sharply focused in
frequency (see spectra above) and in space (see topographies below) and could be used for BCI
control

frequency domain using the MEM algorithm and blocks of 400 ms length. The re-
sulting spectra were averaged across blocks. This produced one average spectrum
for each location and for each of the two conditions of imagined movement of the
left hand and rest. (The example in Fig. 2.15 illustrates spectra at location C4.) The
difference in the spectrum between imagined movement (red dashed line) and rest
(blue solid line) is evident and is sharply focused in frequency (around 11 and 22 Hz)
and space (over location C4 of right sensorimotor cortex). (While in this figure ac-
tivity at 22 Hz may simply be a harmonic of activity at 11 Hz, evidence suggests
that the relationship between mu and beta rhythms may be more complicated [57].)
In other words, this particular subject can use particular motor imagery to change
the signal amplitude at location C4 and 11/22 Hz and could thus communicate her
intent using this particular type of imagery.

To facilitate understanding of the issues in BCI signal processing, the previous
sections described the first component of BCI signal processing, feature extraction,
which is composed of spatial filtering and temporal filtering. The purpose of feature
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extraction is to convert digitized brain signal samples that are recorded at various
locations into features (e.g., frequency-domain spectra ae(n)) that express the sub-
ject’s intent. The second component of BCI signal processing, the translation algo-
rithm, effects this intent by translating these features into device commands. The
following section describes a common realization of the translation algorithm.

2.4.4 Translation Algorithm

The second step of BCI signal processing, the translation algorithm, is comprised
mainly of a signal translation procedure that converts the set of brain signal features
ae(n) into a set of output signals that control an output device. This translation has
been traditionally accomplished using conventional classification/regression proce-
dures. For example, studies have been using linear discriminant analysis [2], neural
networks [34, 75], support vector machines [26, 30, 43, 65], and linear regression
[54, 55]. To compensate for spontaneous changes in brain signals, the translation
algorithm may also include a whitening procedure (e.g., a linear transformation)
that produces signals with zero mean and a defined variance such that the output
device does not have to account for changes in brain signal characteristics that are
not related to the task.

We illustrate the function of a typical approach using an example realization of
a translation algorithm using linear regression. Data were derived from the previous
example shown in Fig. 2.15. Figure 2.16-A shows the distribution of data samples
derived at C4 and 11/22 Hz (i.e., log transformed features a1(n), a2(n), respec-
tively). Blue dots show samples that correspond to rest and red dots show samples
that correspond to imagined left hand movement. Linear regression determined the
coefficients of the linear function that minimized the error between the output of
that function (c(n)) and arbitrary target values for the two classes (i.e., −1, +1).
This procedure derived the coefficients of the linear function that could be used to
translate the features into an output signal: c(n) = 2,560a1(n) + 4,582a2(n). The
histogram of the values of c(n) calculated for the data from the rest class (blue) is
different than that calculated for the data from the imagined hand class (red) (see
Fig. 2.16-B), which indicates that the user had some level of control over this par-
ticular signal. To quantitatively evaluate this level of user control, we determined
the value of r2, i.e., the fraction of the variance in the output signal c(n) that is
associated with the classes. We then applied the same linear function to samples
from all electrodes. Figure 2.16-C illustrates that, as expected, the signal difference
is sharply focused over right sensorimotor cortex.

In summary, BCI signal processing is accomplished using two components. The
first component, feature extraction, extracts brain signal features that reflect the
user’s intent. The second component, the translation algorithm, translates these sig-
nal features into output signals that can control an output device. This translation
algorithm has traditionally been realized using a variety of classification/regression
approaches. In summary, this chapter described relevant principles of BCI operation
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Fig. 2.16 Example of a typical translation algorithm that uses linear regression. A: Distribution
of signal features (i.e., signal amplitudes at C4 and 11/22 Hz for rest (blue dots) and imagined left
hand movement (red dots)). B: Histogram of output values calculated for each of the two classes
using linear regression applied to the two features. C: As expected, the signal difference is focused
over right sensorimotor cortex. See text for details

and associated techniques. The next chapter discusses the general concepts of the
BCI2000 platform, and how BCI2000 can implement these techniques.
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